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Abstract: 

Particle Filter algorithms for filtering latent states (volatility and jumps) of 

Stochastic-Volatility Jump-Diffusion (SVJD) models are being explained. Three 

versions of the SIR particle filter with adapted proposal distributions to the jump 

occurrences, jump sizes, and both are derived and their performance is compared in 

a simulation study to the un-adapted particle filter. The filter adapted to both the 

jump occurrences and jump sizes achieves the best performance, followed in their 

respective order by the filter adapted only to the jump occurrences and the filter 

adapted only to the jump sizes. All adapted particle filters outperformed the un-

adapted particle filter. 
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1 Introduction 

Modelling of volatility and jumps in financial time series plays an important role 

in many areas of finance, such as asset pricing, portfolio optimisation, VaR 

estimation, option valuation or quantitative trading. Stochastic-Volatility Jump-

Diffusion (SVJD) models (Bates, 1996) treat volatility and jumps as latent 

(unobservable) stochastic processes. This allows them to incorporate wide variety 

of empirically observed features of financial time series dynamics, such as 

volatility clustering, long memory, leverage effect, volatility jumps and jump 

clustering. Estimation of these models is, however, notoriously difficult (see 

Shephard, 2005). Unlike models that treat volatility as a deterministic function of 

past asset price returns (such as GARCH), use of SVJD models involves 

estimation of unobservable trajectories of the latent state variables (volatility and 

jumps). This cannot be easily done with standard inference methods such as 

maximum likelihood estimation (MLE) or generalised method of moments 
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(GMM), and computationally intensive, simulation-based approaches must be 

used instead (Andersen et al., 2005). 

Among methods typically used for SVJD model estimation are the Efficient 

Method of Moments and the Markov–Chain Monte Carlo (MCMC) method 

(Jacquier et al., 2007). MCMC has become one of the most popular approaches 

used for SVJD model estimation (Eraker et al., 2003, Witzany, 2013, Fičura and 

Witzany, 2017). A particular drawback of using MCMC in tasks involving 

volatility and jumps forecasting is that the latent-state time series need to be re-

estimated whenever new data arrive, which can be very time consuming. A 

possible solution to this problem is to combine MCMC with Particle Filters, 

allowing us to filter the evolution of the latent states sequentially as new data 

arrive. The most commonly used approach is to estimate the model parameters and 

latent states with MCMC on the in-sample period and then use the Particle Filter 

to filter the evolution of the latent states during the out-sample period. Another 

approach is to use Particle Filters not only for the latent states filtering, but also for 

the sequential learning of model parameters (see Fulop and Li 2013, and Fulop, Li 

and Yu, 2015). 

The goal of the presented study is to derive adapted Particle Filters for filtering of 

latent states in SVJD models with self-exciting jumps. While the un-adapted SIR 

particle filter (Gordon et al. 1993) represents a universal filtering approach, its 

sampling efficiency may be low (Pitt and Shephard, 1999), which turns out to be 

particularly problematic when it is applied for the filtering of SVJD model jumps, 

especially if they are rare. To cope with this problem, we derive three possible 

adaptation schemes, adapting the SIR particle filter either to the jump occurrences, 

jump sizes, or both, and we show in a simulation study that these jump-adapted 

particle filters dramatically outperform the un-adapted particle filter. 

The rest of this study is organised as follows. In section two, the filtering problem 

is described and the basic un-adapted SIR particle filter is explained. In section 

three, the SVJD model with self-exciting jumps is introduced and adapted particle 

filters are discussed. In the following three sections, we derive three jump-adapted 

particle filters which are subsequently applied in the simulation study and their 

performance is compared with the un-adapted particle filter. In the final section, 

we conclude the results and discuss possible areas for future research. 

2 SIR Particle Filter 

The goal of the latent states filtering is to estimate the evolution of latent state time 

series 𝑥𝑡 from the evolution of an observable time series 𝑦𝑡 that is somehow 

dependent on 𝑥𝑡 but is plagued by observation noise. 
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A general state-space model can be written as follows: 

𝑦𝑡 = 𝐻(𝑥𝑡 , 𝑤𝑡 , 𝜃), (1) 

𝑥𝑡 = 𝐹(𝑥𝑡−1, 𝑣𝑡 , 𝜃), (2) 

where 𝑦𝑡 is the observation time series, conditionally independent given the 

hidden state 𝑥𝑡 𝐻(.) and 𝐹(. ) are model functions, 𝜃 is the vector of model 

parameters and 𝑤𝑡 and 𝑣𝑡 are noise terms. 

We further define the observation density as: 

𝑝(𝑦𝑡|𝑥𝑡 , 𝜃) (3) 

and the transition density as: 

𝑝(𝑥𝑡|𝑥𝑡−1, 𝜃) (4) 

with the hidden state 𝑥𝑡 following the Markov process with initial density 

𝑝(𝑥0|𝜃). 

The joint task of latent state filtering and parameter learning is to find the joint 

posterior density of the hidden states and model parameters, based on all currently 

available information at time 𝑡. The problem can be divided into: 

𝑝(𝑥𝑡 , 𝜃|𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃)𝑝(𝜃|𝑦1:𝑡), (5) 

where the density 𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃) solves the filtering problem and 𝑝(𝜃|𝑦1:𝑡) solves 

the parameter learning problem. 

When the functions 𝐻(. ) and 𝐹(. ) are linear and the distributions of 𝑥0, 𝑤𝑡 and 𝑣𝑡 

are Gaussian, the problem can be solved analytically using the Kalman Filter. 

In the general non-linear and non-Gaussian setting, Particle Filters can be used, 

approximating the posterior density 𝑝(𝑥𝑡 , 𝜃|𝑦1:𝑡) with a set of weighted particles. 

In the rest of the text, we will focus on the filtering problem of estimating 

𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃) for the cases where the parameters 𝜃 are known and we will thus 

omit 𝜃 from the notation. In practical settings, the parameter vector 𝜃 has to be 

estimated, either on the in-sample period with MCMC or EMM, or in a sequential 

way with Particle Learning (see Fulop and Li 2013 and Fulop, Li and Yu, 2015). 

When 𝜃 is known, it is possible to estimate the densities 𝑝(𝑥𝑡|𝑦1:𝑡, 𝜃) for all 𝑡 with 

the Sequential Importance Re-Sampling (SIR) Particle Filter (Gordon et al., 1993). 

To employ the filter, we first need an estimate of the latent state density 𝑝(𝑥0) at 

time 𝑡 = 0, represented as a set of 𝑀 weighted particles. This initial distribution is 

usually drawn from some wide enough prior distribution of the latent states.  

For all further steps 𝑡 = 1, … , 𝑇 the particle filter proceeds as follows.  
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Given 𝑀 particles {𝑥𝑡−1
(𝑖)

; 𝑖 = 1,2, … , 𝑀} with weights 𝑤̃𝑡−1
(𝑖)

, representing the 

density 𝑝(𝑥𝑡−1|𝑦1:𝑡−1) at time 𝑡 − 1, we use the following recursion: 

𝑝(𝑥𝑡|𝑦1:𝑡) ∝ ∫ 𝑝(𝑦𝑡|𝑥𝑡) 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1, (6) 

where ∝ means that the density 𝑝(𝑥𝑡|𝑦1:𝑡) is proportional to the right-hand side of 

the equation up to a normalising constant. 

To approximate 𝑝(𝑥𝑡|𝑦1:𝑡) we draw random particles (i.e. proposal values of the 

latent states) from a known proposal density g(𝑥𝑡|𝑥𝑡−1) and assign them with 

importance weights given as: 

𝑤𝑡
(𝑖)

=
𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  )

𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡)
𝑤̃𝑡−1

(𝑖)
 (7) 

In the most universal, un-adapted version of the particle filter, the proposal density 

is equal to the transition density: 

𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) = 𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  ) (8) 

And the weight update is thus equal to: 

𝑤𝑡
(𝑖)

= 𝑝(𝑦𝑡|𝑥𝑡
𝑖)𝑤̃𝑡−1

(𝑖)
, (9) 

where 𝑝(𝑦𝑡|𝑥𝑡
𝑖) is the likelihood of the observation 𝑦𝑡 given the latent state 𝑥𝑡

𝑖. 

Normalized weights for time 𝑡 are then computed as: 

𝑤̃𝑡
(𝑖)

= 𝑤𝑡
(𝑖)

∑ 𝑤𝑡
(𝑖)

𝑀

𝑗=1
⁄  (10) 

Arriving at a weighted set of particles  {𝑥𝑡
(𝑖)

; 𝑖 = 1,2, … , 𝑀} with weights 𝑤̃𝑡
(𝑖)

, 

representing the density 𝑝(𝑥𝑡|𝑦1:𝑡) at time 𝑡. 

As the particle weights tend to degenerate after few iterations to the state where 

only one particle has a non-negligible weight, a re-sampling step is usually added 

to the algorithm. In the re-sampling step, the particles are re-sampled with a 

replacement from the current particles set with probabilities proportional to the 

particle weights. 

The re-sampling can be performed after each iteration or only when the efficient 

number of particles (𝐸𝑆𝑆) drops below a certain threshold (𝐸𝑆𝑆𝑇ℎ𝑟): 

𝐸𝑆𝑆 = 1 ∑ (𝑤̃𝑡
(𝑖)

)
2𝑀

𝑗=1
⁄ < 𝐸𝑆𝑆𝑇ℎ𝑟 (11) 
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3 SVJD Model and the Un-adapted Particle Filter 

In the presented study, the SIR Particle Filter is applied for filtering of latent states 

of the SVJD model with self-exciting jumps. The SVJD model has 3 equations. 

The first equation describes the process of logarithmic asset price returns as: 

𝑟𝑡 = 𝜇 + 𝜎𝑡𝜀𝑡 + 𝐽𝑡𝑄𝑡, (12) 

where 𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−1 is the logarithmic return, 𝑝𝑡 is the logarithm of the asset 

price, 𝜇 is the drift rate, 𝜎𝑡 is the stochastic volatility, 𝜀𝑡~𝑁(0,1) is a standard 

normal white noise, 𝐽𝑡~𝑁(𝜇𝐽 , 𝜎𝐽) is a latent variable determining the jump sizes, 

and 𝑄𝑡~𝐵𝑒𝑟𝑛[𝜆𝑡] is a latent variable determining the jump occurrences, so that 

Pr[𝑄𝑡 = 1] = 𝜆𝑡, and 𝜆𝑡 is the latent jump intensity. 

The second equation describes the process of the log-variance as: 

ℎ𝑡 = 𝛼 + 𝛽ℎ𝑡−1 + 𝛾𝜀𝑉,𝑡, (13) 

where ℎ𝑡 = log(𝑉𝑡) is the logarithm of the stochastic variance 𝑉𝑡 = 𝜎𝑡
2, 𝛼 is the 

constant of the model, determining the long-term log-variance via the relationship 

𝛼 = (1 − 𝛽)ℎ𝐿𝑇, 𝛽 is the auto-regression coefficient, 𝛾 is the volatility of the log-

variance, and 𝜀𝑉,𝑡~𝑁(0,1) is Gaussian white noise in the log-variance process. 

The third equation corresponds to the discretized Hawkes process, governing the 

self-exciting behaviour of jumps, by defining the process of the jump intensity as: 

𝜆𝑡 = 𝛼𝐽 + 𝛽𝐽𝜆𝑡−1 + 𝛾𝐽𝑄𝑡−1, (14) 

where 𝜆𝑡 is the jump intensity, 𝛼𝐽 determines the long-term jump intensity via 

αJ = (1 − βJ − 𝛾𝐽)𝜆𝐿𝑇, 𝛽𝐽 is the speed of the exponential decay of the jump 

intensity towards its long-term level 𝜆𝐿𝑇, and 𝛾𝐽 is the self-exciting parameter, 

determining how much will the jump intensity increase within a day following the 

jump 𝑄𝑡−1. 

The SVJD model contains 3 series of latent state variables. Stochastic variances 

𝑉𝑡, jump occurrences 𝑄𝑡 and jump sizes 𝐽𝑡. These latent time series represent the 

vector latent state variable 𝑥𝑡 in the particle filter notation, while the observed 

logarithmic returns represent the observable variable 𝑦𝑡. 

As already mentioned, in the un-adapted particle filter, the proposal density equals 

the transition density 𝑔(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 , 𝑦𝑡) = 𝑝(𝑥𝑡
𝑖|𝑥𝑡−1

𝑖  ). In the SVJD model, the 

proposal density will thus be: 

𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 ) (15) 

and the proposal values of ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖 can be sampled independently from: 
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𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) (16) 

𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽 , 𝜎𝐽) (17) 

𝑝(𝑄𝑡
𝑖|𝜆𝑡

𝑖 )~𝐵𝑒𝑟𝑛[𝜆𝑡
𝑖 ] (18) 

The likelihood function of the model is: 

𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖)~𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡

𝑖𝑄𝑡
𝑖 , 𝜎𝑡

𝑖) (19) 

And the weight update will be: 

𝑤𝑡
(𝑖)

=  𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖)𝑤̃𝑡−1

(𝑖)
 (20) 

4 Adapted Particle Filters 

As the proposal density of the un-adapted particle filter does not utilise the 

information about the observation 𝑦𝑡 (which is already known at 𝑡), it is sub-

optimal and it tends to propose many latent state values that end up being 

discarded during the weight update and re-sampling step. This inefficiency is 

especially severe in the case of jumps, as the value of 𝜆𝑡 is often very small and 

the vast majority of latent state proposals will thus give 𝑄𝑡
𝑖 = 0, in spite of the fact 

that the corresponding 𝑟𝑡 may be very large and thus indicative of the jump. Even 

the few proposals that happen to give 𝑄𝑡
𝑖 = 1 may subsequently also get discarded, 

as the value of the independently sampled 𝐽𝑡
𝑖 may be inadequate or even have the 

opposite sign to the observed return. The un-adapted sampling of proposals may 

thus be very inefficient with respect to the jumps, and a large number of proposals 

will thus have to be generated to achieve reasonable accuracy of the particle filter 

(for discussion of alternatives, such as the Auxiliary Particle Filter, see Pitt and 

Shephard, 1999). 

Solution to his problem is to use an adapted filter, utilising the information about 

𝑟𝑡 during sampling of the proposals. In the ideal case of a fully adapted particle 

filter, the proposal density would look as follows: 

𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) (21) 

Unfortunately, this density is of an unknown form for the analysed SVJD model, 

due to the stochastic variance term, that it is log-normal with respect to 𝑉𝑡−1
𝑖 , but 

inverse-gamma with respect to 𝑟𝑡. For approximations of how to sample 𝑉𝑡
𝑖  in the 

MCMC setting which could potentially also be applied in particle filters, see 

Jacquier et al. (1994), or Kim, Shephard and Chib (1998). 

Fortunately, employment of the particle filter does not require fully adapted 

proposal density and an approximate adaptation may be used instead. 
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Denoting the approximately adapted proposal distribution as: 

𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) (22) 

we just need to appropriately assign the updated weights to the sample: 

𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖 , 𝑄𝑡

𝑖)𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 )

𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)

𝑤̃𝑡−1
(𝑖)

 (23) 

in order to get the weighted sample from 𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡). 

As sampling of the asset price jumps is the least efficient part of the sampling, we 

proceed to derive adapted proposal distributions with respect to the jump 

occurrences (𝑄𝑡
𝑖) and jump sizes (𝐽𝑡

𝑖), which can be done analytically, while 

leaving the sampling of the stochastic variances un-adapted. 

5 Particle Filter Adapted to Jump Sizes 

To adapt the proposal density to the jump sizes 𝐽𝑡
𝑖, we rewrite it as follows: 

𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)

= 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)𝑝(ℎ𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 ) 

(24) 

We then sample from 𝑝(ℎ𝑡
𝑖 , 𝑄𝑡

𝑖|ℎ𝑡−1
𝑖 , 𝐽𝑡−1

𝑖 , 𝑄𝑡−1
𝑖 , 𝜆𝑡−1

𝑖 ) the proposals of ℎ𝑡
𝑖  and 𝑄𝑡

𝑖 

independently, using the transition densities: 

𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) (25) 

𝑝(𝑄𝑡
𝑖|𝜆𝑡

𝑖 )~𝐵𝑒𝑟𝑛[𝜆𝑡
𝑖 ] (26) 

In the second step, we sample from the adapted density: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) (27) 

which is equivalent to 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡 , 𝑄𝑡
𝑖), and we can sample from it as follows. 

If 𝑄𝑡
𝑖 = 0, then 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑟𝑡 , 𝑄𝑡

𝑖 = 0) = 𝑝(𝐽𝑡
𝑖) and we sample from: 

𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽 , 𝜎𝐽) (28) 

If 𝑄𝑡
𝑖 = 1, then we can express 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑟𝑡 , 𝑄𝑡

𝑖 = 1) with the Bayes theorem as: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡 , 𝑄𝑡
𝑖 = 1) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖 , 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖) (29) 

As both right hand side densities are Gaussian in 𝐽𝑡
𝑖: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖 = 1) ∝ 𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡

𝑖, 𝜎𝑡
𝑖)𝑁(𝐽𝑡

𝑖; 𝜇𝐽 , 𝜎𝐽) (30) 
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we can derive the adapted Gaussian density to sample from as: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡 , 𝑄𝑡
𝑖 = 1)~𝑁(𝜇𝐽

∗, 𝜎𝐽
∗) (31) 

𝜇𝐽
∗ =

(𝑟𝑡 − 𝜇)𝜎𝐽
2 + 𝜇𝐽𝑉𝑡

𝑖

𝜎𝐽
2 + 𝑉𝑡

𝑖
 (32) 

𝜎𝐽
∗ =

𝜎𝐽𝜎𝑡
𝑖

√𝜎𝐽
2 + 𝑉𝑡

𝑖

 
(33) 

and the importance weights update is: 

𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖)

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖)

𝑤̃𝑡−1
(𝑖)

 (34) 

6 Particle Filter Adapted to Jump Occurrences 

To adapt the proposal density with respect to the jump occurrences 𝑄𝑡
𝑖, we rewrite 

the proposal density as: 

𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)

= 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)𝑝(ℎ𝑡

𝑖 , 𝐽𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 ) 

(35) 

We then sample from 𝑝(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖|ℎ𝑡−1
𝑖 , 𝐽𝑡−1

𝑖 , 𝑄𝑡−1
𝑖 , 𝜆𝑡−1

𝑖 ), the values of ℎ𝑡
𝑖  and 𝐽𝑡

𝑖, 

independently, by using the transition densities: 

𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) (36) 

𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽 , 𝜎𝐽) (37) 

Then we sample 𝑄𝑡
𝑖 from:  

𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) (38) 

which is in our case equal to 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) and 𝑝(𝑄𝑡

𝑖|ℎ𝑡
𝑖 , 𝐽𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡), as 

the jump intensity 𝜆𝑡
𝑖  is given deterministically by 𝑄𝑡−1

𝑖  and 𝜆𝑡−1
𝑖 . 

From the Bayes theorem we can derive the adapted density as: 

𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖 , 𝜆𝑡

𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑡
𝑖∗] (39) 

𝜆𝑡
𝑖∗ =

𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡
𝑖, 𝜎𝑡

𝑖)𝜆𝑡
𝑖

𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡
𝑖 , 𝜎𝑡

𝑖)𝜆𝑡
𝑖 + 𝑁(𝑟𝑡; 𝜇, 𝜎𝑡

𝑖)(1 − 𝜆𝑡
𝑖 )

 (40) 
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And the importance weight update is: 

𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)(𝜆𝑡
𝑖 )

𝑄𝑡
𝑖

(1 − 𝜆𝑡
𝑖 )

1−𝑄𝑡
𝑖

(𝜆𝑡
𝑖∗)

𝑄𝑡
𝑖

(1 − 𝜆𝑡
𝑖∗)

1−𝑄𝑡
𝑖 𝑤̃𝑡−1

(𝑖)
 (41) 

7 Particle Filter Adapted to Jump Sizes and Occurrences 

We can rewrite the proposal density as: 

𝑔(ℎ𝑡
𝑖 , 𝐽𝑡

𝑖, 𝑄𝑡
𝑖|ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)

= 𝑝(𝐽𝑡
𝑖 , 𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)𝑝(ℎ𝑡

𝑖 |ℎ𝑡−1
𝑖 , 𝐽𝑡−1

𝑖 , 𝑄𝑡−1
𝑖 , 𝜆𝑡−1

𝑖 ) 
(42) 

And decompose the bi-variate density for 𝐽𝑡
𝑖 and 𝑄𝑡

𝑖 into: 

𝑝(𝐽𝑡
𝑖, 𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)

= 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡)𝑝(𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) 

(43) 

which equivalent to: 

𝑝(𝐽𝑡
𝑖, 𝑄𝑡

𝑖|ℎ𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝐽𝑡−1
𝑖 , 𝑄𝑡−1

𝑖 , 𝜆𝑡−1
𝑖 , 𝑟𝑡) = 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 , 𝑟𝑡)𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) (44) 

for 𝑄𝑡
𝑖 = 0 it holds that: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡 , 𝑄𝑡
𝑖 = 0) = 𝑝(𝐽𝑡

𝑖) (45) 

with 𝑝(𝐽𝑡
𝑖)~𝑁(𝜇𝐽, 𝜎𝐽). 

For 𝑄𝑡
𝑖 = 1 we need to use the Bayes theorem to express 𝑝(𝐽𝑡

𝑖|ℎ𝑡
𝑖 , 𝑟𝑡 , 𝑄𝑡

𝑖 = 1) as: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡 , 𝑄𝑡
𝑖 = 1) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖 , 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖) (46) 

which is a multiple of two Gaussian densities: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖 = 1) ∝ 𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡

𝑖, 𝜎𝑡
𝑖)𝑁(𝐽𝑡

𝑖; 𝜇𝐽 , 𝜎𝐽) (47) 

and the adapted density can be derived as: 

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡 , 𝑄𝑡
𝑖 = 1)~𝑁(𝜇𝐽

∗, 𝜎𝐽
∗) (48) 

𝜇𝐽
∗ =

(𝑟𝑡 − 𝜇)𝜎𝐽
2 + 𝜇𝐽𝑉𝑡

𝑖

𝜎𝐽
2 + 𝑉𝑡

𝑖
 (49) 

𝜎𝐽
∗ =

𝜎𝐽𝜎𝑡
𝑖

√𝜎𝐽
2 + 𝑉𝑡

𝑖

 
(50) 
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The next task is to derive the density 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡). Using the Bayes theorem: 

𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖)𝑝(𝑄𝑡

𝑖|𝜆𝑡
𝑖 ) (51) 

the density 𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖) is the marginal of 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖), integrated over 𝐽𝑡. 

When 𝑄𝑡
𝑖 = 0, then 𝐽𝑡 and 𝑟𝑡 are independent, and thus: 

𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 0) = 𝑁(𝑟𝑡; 𝜇, 𝜎𝑡
𝑖) (52) 

When 𝑄𝑡
𝑖 = 1, then we decompose the density 𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖 = 1) into: 

𝑝(𝑟𝑡, 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑝(𝑟𝑡|𝐽𝑡, ℎ𝑡
𝑖 , 𝑄𝑡

𝑖)𝑝(𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖) (53) 

Which is a multiple of two Gaussian densities: 

𝑝(𝑟𝑡 , 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑁(𝑟𝑡; 𝜇 + 𝐽𝑡, 𝜎𝑡
𝑖)𝑁(𝐽𝑡; 𝜇𝐽 , 𝜎𝐽) (54) 

Or equivalently: 

𝑝(𝑟𝑡 , 𝐽𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑁(𝑟𝑡 − 𝜇; 𝐽𝑡, 𝜎𝑡
𝑖)𝑁(𝐽𝑡; 𝜇𝐽 , 𝜎𝐽) (55) 

The density 𝑟𝑡 − 𝜇 is a Compound Gaussian density with mean distributed 

according to the Gaussian density 𝑁(𝐽𝑡; 𝜇𝐽, 𝜎𝐽). We can thus integrate over 𝐽𝑡 to 

get: 

𝑝(𝑟𝑡|ℎ𝑡
𝑖 , 𝑄𝑡

𝑖 = 1) = 𝑁 (𝑟𝑡; 𝜇𝐽 + 𝜇, √𝜎𝐽
2 + 𝑉𝑡

𝑖) (56) 

Returning to the relationship 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡) ∝ 𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖)𝑝(𝑄𝑡

𝑖|𝜆𝑡
𝑖 ), we see that 

we can easily compute the normalising constant, as the 𝑄𝑡
𝑖 is only binary. 

Thus, we get for 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡): 

𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑡

𝑖∗], (57) 

𝜆𝑡
𝑖∗ =

𝑁 (𝑟𝑡; 𝜇𝐽 + 𝜇, √𝜎𝐽
2 + 𝑉𝑡

𝑖) 𝜆𝑡
𝑖

𝑁 (𝑟𝑡; 𝜇𝐽 + 𝜇, √𝜎𝐽
2 + 𝑉𝑡

𝑖) 𝜆𝑡
𝑖 + 𝑁(𝑟𝑡; 𝜇, 𝜎𝑡

𝑖)(1 − 𝜆𝑡
𝑖 )

 (58) 

In order to sample from the proposal density, we will first sample from the 

transition density 𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖 ), given as: 

𝑝(ℎ𝑡
𝑖 |ℎ𝑡−1

𝑖  )~𝑁(𝛼 + 𝛽ℎ𝑡−1, 𝛾) (59) 
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Then we sample from the adapted jump occurrence density 𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡): 

𝑝(𝑄𝑡
𝑖|ℎ𝑡

𝑖 , 𝜆𝑡
𝑖 , 𝑟𝑡)~𝐵𝑒𝑟𝑛[𝜆𝑡

𝑖∗] (60) 

And finally, the adapted jump sizes from 𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑄𝑡
𝑖 , 𝑟𝑡), as already described. 

The importance weight update is: 

𝑤𝑡
(𝑖)

=
𝑝(𝑟𝑡|ℎ𝑡

𝑖 , 𝐽𝑡
𝑖, 𝑄𝑡

𝑖)𝑝(𝐽𝑡
𝑖)(𝜆𝑡

𝑖 )
𝑄𝑡

𝑖

(1 − 𝜆𝑡
𝑖 )

1−𝑄𝑡
𝑖

𝑝(𝐽𝑡
𝑖|ℎ𝑡

𝑖 , 𝑟𝑡, 𝑄𝑡
𝑖)(𝜆𝑡

𝑖∗)
𝑄𝑡

𝑖

(1 − 𝜆𝑡
𝑖∗)

1−𝑄𝑡
𝑖 𝑤̃𝑡−1

(𝑖)
 (61) 

8 Simulation Results 

Time series of returns were simulated according to the described SVJD model 

with parameters given as: 𝜇 =
0.05

252
, 𝜇𝐽 = −0.01, 𝜎𝐽 = 0.04, 𝑉𝐿𝑇 = 𝑒

𝛼

1−𝛽 = 0.012, 

𝛽 = 0.98, 𝛾 = 0.2, 𝜆𝐿𝑇 =
𝛼𝐽

1−𝛽𝐽−𝛾𝐽
= 0.02, 𝛽𝐽 = 0.95, and 𝛾𝐽 = 0.04. 

For illustration purposes, we first show the performance of a particle filter with 

only 100 particles (and a 50 particle re-sampling threshold) on a simulated time 

series with 4,000 observations, for the un-adapted filter, and for the filter with 

fully adapted jumps (i.e. the filter adapted to jump sizes and occurrences, 

described in Section 7). 
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Fig. 1 Simulated vs. filtered time series for the un-adapted particle filter 

Source: Authorial computation. 
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Fig. 2 Simulated vs. filtered time series for the jump-adapted particle filter 

Source: Authorial computation. 

Figure 1 shows filtered latent state time series for the stochastic log-variances, 

variances, jump intensities and jump occurrences for the un-adapted particle filter, 

while Figure 2 shows the same filtered time series for the jump-adapted filter. 

While we cannot see any pronounced differences in the log-variance and variance 

time series, we can see that the un-adapted particle filter estimated far less jumps, 

and that it struggled to capture the increases in jump intensity, caused by the jump 

self-excitation around the 2,000th and the 3,000th period of simulation. The 

adapted filter, on the other hand, managed to estimate larger number of jumps and 

it was also able to better capture the evolution of the jump intensity. 

To compare the results more quantitatively, the simulation was run 200 times, and 

the four proposed filters (un-adapted, jump-size adapted, jump-occurrence 

adapted, and fully jump-adapted) were applied to each of the simulations. R-

Squared (R2) was computed to assess how well do the filtered estimates fit the 

log-variance, variance and jump-intensity, and the Accuracy Ratio (AR) was used 

to evaluate how well do they manage to filter the simulated jumps. Figure 3 shows 
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the distributions of these quantities over the 200 simulations for all of the 

proposed filters. 

Fig. 3 Distribution of the R2 and AR achieved in 200 simulation runs 

Source: Authorial computation. 

We can see that the un-adapted particle filter achieved by far the worst results, 

followed by the jump-size adapted filter and the jump-occurrence adapted filter, 

while the best performance was achieved by the fully jump-adapted particle filter. 

The mean values of the R-Squared (R2) and the Accuracy Ratio (AR) achieved 

over the 200 runs of the simulation test are summarised in Table 1. 

Tab. 1 Average R2 and AR of the filtered estimates in 200 simulation runs 

Particle Filter log-variance R2 variance R2 
jump intensity 

R2 

jump 

occurrence AR 

Un-Adapted filter 0.604 0.456 -0.002 0.160 

Jump-size adapted 0.673 0.553 0.326 0.484 

Jump-occurr. adapted 0.708 0.599 0.501 0.732 

Fully jump-adapted 0.711 0.601 0.490 0.747 

Source: Authorial computation. 
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The numerical results in Table 1 clearly show the fully jump-adapted and the 

jump-occurrence adapted particle filters to be the best, while the un-adapted 

particle filter achieved the worst results, especially with regards to the filtering of 

the jumps. 

9 Conclusion 

Particle filter algorithms for the filtering of latent state time series of SVJD models 

were explained and several methods of how to adapt these filters to the jump 

occurrences and jump sizes were derived. The results of the simulation study show 

that the proposed jump-adapted particle filters significantly outperform the un-

adapted particle filter in their ability to filter the latent volatility and jumps. The 

filter adapted to both the jump occurrences and jump sizes achieved on average the 

best results, followed narrowly by the filter adapted only to the jump occurrences. 

The performance of the filter adapted only to the jump sizes was lower, but still 

much better than for the un-adapted particle filter. In future studies it would be 

interesting to test particle filters approximately adapted to the stochastic variances 

as well, and to apply the methodology to more complex SVJD models, including 

jumps in volatility, correlation between volatility and returns, multiple volatility 

components, or other empirically observed effects of financial time series. 
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