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Survival Analysis in LGD Modeling# 

Jiří WITZANY* – Michal RYCHNOVSKÝ** – 
Pavel CHARAMZA*** 

Introduction 

Loss Given Default (LGD) is one of the key parameters needed in 
order to estimate expected and unexpected credit losses necessary for 
credit pricing as well as for calculation of the regulatory Basel II 
requirement (BCBS, 2006). While the credit rating and probability of 
default (PD) techniques have been well developed in recent decades, 
LGD has attracted little attention before 2000s. One of the first papers on 
the subject (Schuermann, 2004) provides an overview of what has been 
known about LGD at that time. Since the first Basel II consultative papers 
being published there has been an increasing amount of research on LGD 
estimation techniques (see e.g. Altman – Resti – Sironi, 2004; Frye, 2003; 
Gupton, 2005; Huang – Oosterlee, 2008; etc.). 

One of the issues financial institutions estimating PD and LGD face is 
lack of data. Besides the problem of short time series the most recent 
development is usually represented only by partial, i.e. censored data on 
defaults and recoveries. If default is defined as a legal bankruptcy or 90 
days past due observed in the standard 12 month horizon then it is difficult 
to use data on loans granted during the last 12 months to predict PD for new 
applications. The problem is even more serious for LGD where financial 
institutions have started to collect data on recoveries from defaulted 
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receivables in systematic manner relatively recently and moreover the 
recovery process usually takes up to three or even more years. Hence even 
if a bank observed recoveries on loans that defaulted in the past five years 
many or majority of LGD observations may be incomplete. It may be then 
difficult or impossible to estimate the LGD satisfying the regulatory 
requirements (BCBS, 2005) as well as the point-in-time LGD important 
for actual credit pricing that should reflect the most recent trends. 

It is natural to apply the statistical technique of survival time analysis 
to model the probability of default. The technique allows to utilize censored 
default data as well as to model consistently probabilities of default in 
different time horizons. There is a relatively extensive literature on the 
subject (see e. g. Narain, 1992; Andreeva, 2006; Chava – Stefanescu – 

Turnbull, 2008) and the technique is used by some banks and practitioners. 
On the other hand with the exception of Rychnovsky (2009) there is no 
literature to the authors’ knowledge on possible applications of the survival 
time modeling techniques to LGD modeling. This can be explained by the 
fact that the LGD estimation techniques are generally less developed and 
the interpretation of recovery data as time survival data is less 

straightforward than in the case of defaults. 

The goal of this paper is to study possible applications of survival 
time analysis techniques, in particular the proportional Cox model and its 
modifications to LGD estimations. The methods are applied to real 
banking data and compared with more classical techniques like the linear 
and logistic regression. The definitions and methodological approach are 
outlined in Section 2, the empirical results are given and discussed in 
Section 3, and concluding remarks are made in Section 4. 

1 Methodology 

1.1 Recovery Rates and Loss given Default 

First we need to specify the notions of realized (ex post) and expected 
(ex ante) Recovery rate (RR) and the complementary Loss Given Default 
(LGD). Realized RR can be observed only on defaulted receivables while 
the expected recovery rate is estimated for non defaulted receivables based 
on available information. The RR and LGD are expressed as percentages 
out of the exposure outstanding at default (EAD) and LGD = 1 – RR is 
simply the complementary loss rate based on the recovery rate that is 
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usually less than 1. For market instruments like bonds or other debt 
securities we may define the market RR as the market value out of the 
principal (plus coupon accrued at default) of the security shortly (e.g. one 
month) after the default. Applicability of the definition assumes existence 
of an efficient and sufficiently liquid market for defaulted debt. For other 
receivables we have to observe the net recovery cash flows CFt from the 
receivable generated by a work-out process. The work-out process may be 
internal or external where a collection company is paid a fee for collecting 
the payment on behalf of the receivable owner. The process may also 
combine an ordinary collection and sale of the receivable to a third party. 
In any case the work-out process involves significant costs that must be 
deducted from the gross recoveries. The net cash flows must be finally 
discounted with a discount rate r appropriately reflecting the risk (BCBS, 
2005). 
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The work-out recovery rate should in a sense mimic the market 
recovery rates. The relationship between the two ex ante notions is an 
analogy between the fundamental value and the market value of a stock. 
Hence the discount rate can be based on a measure of the RR systematic 
risk and a general price of risk (see Witzany, 2009). Since the market 
recovery rate is never negative and can be hardly larger than 1 we 
normally assume that RR as well as LGD = 1 – RR lie in the interval [0,1]. 
The calculation of the work-out recovery rates according to (1) may 
however in some cases lead to negative values due to high costs and low 
or no recoveries, and on the other hand to values larger than 1 in the case 
of large and successfully collected late fees. 

Having collected and calculated the realized recovery rates the next 
task is to estimate LGD for non defaulted accounts. In case of new loan 
applications banks need to estimate not only the probability of default (i) 
in the 12 month or longer horizon but also the LGD in the same horizon. 
The loan interest rate margin should cover the expected loss PD LGD⋅  
besides the cost of funds, administrative costs, minimum profit, etc. The 
ex ante LGD must be also calculated by banks applying the Advanced 
Internal Rating Based Approach (AIRB) in order to calculate the capital 
requirement for every non-defaulted receivable as defined by the Basel 
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(2006) regulation. Looking on the recovery cash flow data the typical 
situation may be illustrated by Figure 1. 

Fig. 1: Ex post recovery data  
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B
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0 5T −

 
The recovery cash flow finishes at time tn from (1) if the past due 

receivable is fully collected, or the uncollected receivable is written-off 
abandoning further collection or due to a sale of receivables, or when the 
recovery time exceeds certain maximum time, e.g. 3 years. Hence if T0 
denotes the current time then the ultimate recovery rate information is 
systematically available only for receivables that defaulted between the 
time T0 – 5 years and T0 – 3 years, i.e. in the part A of Figure 1. Between 
T0 – 3 and T0, i.e. in the part B, the recorded recovery rate history will be 
for many receivables only partial. For example for receivables that 
defaulted 6 month ago, i.e. at T0 – 0.5 only for a minority the collection 
process could have been finished due to a full repayment, sale of 
receivable, or a write-off caused by some legal reasons. For majority of 
the defaulted receivables there is only partial recovery history information 
and the ultimate result of the recovery process is not known. Consequently 
the decision to use, for the sake of ex ante estimations, the completed 
recoveries from the part B but discard the incomplete recoveries may 
cause a significant bias and an estimation error. So applying methodologies 
based on ultimate recoveries we should limit ourselves just to data from 
the part A. Such a dataset may be clearly insufficient in terms of number 
of observations and more importantly we are losing the information on 
recent developments that might be important in particular in times of a 
financial turmoil like the recent one. 

Regarding the basic LGD estimation techniques we distinguish the 
pool level and account level estimations. The pool level estimations are 
designed for pools of receivables that are assumed to be homogenous in 
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terms of expected LGD, typically defined by product, collateral level, and 
other properties. For example we may observe realized recovery rates for 
unsecured consumer loans collected through a standardized internal 
process and estimate the expected LGD for non-defaulted unsecured 
consumer loans as one minus an average ultimate recovery rate observed 
in the part A of Figure 1. A more advanced approach is to try estimating 
expected LGD based on a set of explanatory variables, i.e. on specific 
properties of every non-defaulted receivable based on historical recovery 
rates and the observed values of the explanatory variables. We will go in 
this direction and compare classical linear and logistic regressions 
utilizing only the ultimate recoveries (part A, Figure 1) and the survival 
analysis techniques that can also consistently exploit the complete and 
incomplete recoveries in the part B. 

1.2 Goodness of Fit Measures 

Before we start analyzing various regression methods that could be 
applied to estimation of ex ante LGD let us specify our target in terms of 
appropriate goodness of fit measures. The goal is to find, based on 
available historical data, a function ˆ( ) ( ( ))L a F a= x that gives predictions 
of the Loss Given Defaults based on given explanatory variables ( )ax for 
any non-defaulted receivable a in the product class for which the function 
has been developed. The performance of the function should be measured 
only on receivables that default within the 12 month horizon from the 
estimation time. So if we develop the function at time T0 on the data 
shown on Figure 1, optimally we need to calculate all the predictions 
based on covariates as of T0, then wait 12 month to record the set D of all 
defaults in the observed class of receivables, and moreover wait up to 3 
more years to obtain the realized ( ),LGD a a D∈ . Given all the data we 
may finally calculate e.g. the EAD weighted R-squared as a standard 
goodness of fit measure: 
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The indicator 2 2 ( , )R R D µ=  depends on the set of defaulted accounts 

used and on the meanµ . The EAD weighted mean of ( ),LGD a a D∈  would 
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be a standard choice but the logic of the measure is to compare the 

performance of an advanced prediction function with a basic LGD mean 
estimate that could be produced at the time 0T . However at that time we may 
calculate only the mean of ultimate LGDs in the rectangle part A of the 
historical data, hence further on we shall use 

( ) ( ) / ( )
a A a A

EAD a LGD a EAD aµ
∈ ∈

= ⋅∑ ∑ .  

The indicator R-squared is a conventional econometric measure that 
has many technical advantages. Nevertheless it does not exactly fit the 
practical perspective of the LGD estimation users, i.e. banks and the 
regulators. The banks and the regulators will rather measure the absolute 
difference of realized losses and of the predictions (in currency units). 
The banks will not be happy if the predictions overshoot the real losses 
since the high predictions cause unnecessary capital requirements or too 
conservative prices. The central bank will not accept systematically low 
predictions reducing the capital requirement that should serve as a buffer 
against unexpected losses. Hence we propose to rather look on the 
modified R based on the absolute sum of differences: 
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Finally we have to consider feasible data sets at which the goodness 
of fit measures could be evaluated. To get the full out-of-sample measures 
as described above we would need at least 9 years of data, 5 years for the 
estimations and 4 years for the out-of-sample calculations. Since we have 
a shorter period of data we will have to use an in-sample or a mix 
between in-sample and out-sample approach. The first possibility is to 
evaluate the goodness of fit measures on the set A of receivables with 
ultimate recoveries. The measures would however clearly give an 
advantage to regression functions developed only on A  not taking into 
account the data from the part B (Figure 1). Hence to get a fair goodness 
of fit measure we will assume that we know the ultimate recoveries of all 
the accounts in the part B. This can be achieved waiting sometime after 

0T until all the partial recoveries are completed, or retrospectively by 
using only a part of the historical data for the regression and remaining 
part to obtain the completed recoveries. Let B  be the set of all receivables 
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in the part B of our development dataset and let C BA= ∪ . The key 
goodness of fit measures we shall use will be 2 ( , )R C µ  and )( ,R C µ with 
the EAD weighted LGD mean µ calculated on the set A . 

1.3 Linear and Logistic Regression 

The simplest way to model LGD is to use the OLS regression 
( ) ( ) 'LGD a a ε= +x β , i.e. to search for the function L  in the form 

( ) ( ) 'L a a= x β , ( )ax containing the constant covariate 1, minimizing the 
sum of squared errors with the EAD weights on the given sample, 
i.e. looking for the coefficients β  minimizing the expression 

( )2( ) ( ) (· )
Aa

EAD a LGD a L a
∈

−∑ . The solution that can be expressed 

analytically by definition maximizes 2 ( , )R A µ  but not necessarily 
2 ( , )R C µ or )( ,R C µ . 

The second possibility we will explore is the logistic regression based 
on the idea dividing the observed and future LGDs on “low” and “high” 
values. Let (0,1)l∈ be a threshold and define an LGD  value to be “low” 
if LGD l< . Hence for a A∈  we have the indicator function ( ) {0,1}low a ∈  
and for a non defaulted receivables we want to find the logistic function  

 
exp( ( ) ' )( )

1 exp( ( ) ' )
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a
π =

+
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,  

estimating the probability that the loss will be “low” if the account 
defaults. To estimate the ex ante LGD we combine appropriately the EAD 
weighted mean of low observed LGDs and high observed LGDs, i.e. 

 ( ) () )( )( 1low highaL a aπ µ π µ= + ⋅−⋅ ,  

           , ( )

, ( )

( ) ( )

( )
a A low a

low

a A low a

EAD a LGD a

EAD a
µ ∈

∈

⋅
=

∑
∑

,                                              (4) 



European Financial and Accounting Journal, 2012, vol. 7, no. 1, pp. 6-27. 

 13

                , ( )

, ( )

( ) ( )

( )
a A low a

high

a A low a

EAD a LGD a

EAD a
µ ∈ ¬

∈ ¬

⋅
=

∑
∑

. 

 

The vector of parametersβ is obtained by maximizing the likelihood  

 
· ( ) (1 ( ))· (( ) )( ) 1 ( )( )low EAD a low a EADa a

a A

L a aπ π −

∈

= −∏ .  

The solution can be found numerically e.g. solving 
( )( )· ( ) ( ) ( ) 0

a A

EAD a low a a aπ
∈

− =∑ x with the Newton-Raphson algorithm. 

The performance of the resulting function (4) may be tested for different 
values of the threshold l , e.g. 0.1, 0.2, …, 0.9. 

1.4 Survival Analysis LGD Modeling 

The survival analysis is appropriate in situations where we observe a 
population of objects that stay in certain state (survive) for some time 
until an exit (death or failure) happens. Typically some observations are 
censored, i.e. the objects are known to have survived until certain time but 
no more information is available. The goal is to study the time until 
failure and the probability of survival or failure in a given time period. In 
the case of defaulted receivables the idea is to consider the currency units 
or certain elementary amounts as the individuals that are in the collection 
process until they exit by a repayment. 

The key survival analysis concepts (Greene, 2003, Kalbfleisch, 
Prentice, 2002, Collet, 2003) are the survival function and the hazard rate. 
Let T be the random variable representing the time of exit of an object,  

( , 0)f t t ≥  its continuous probability density function, and ( )F t  the 
cumulative distribution function. Then ( )F t  is the probability of exit 
(failure) of an individual until the time t while the survival function 

( ) 1 ( )S t F t= − gives the probability of survival until t. The hazard rate is 

defined as 
( )( )
( )

f tt
S t

λ = . It gives the rate at which objects that have survived 
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until the time t and exit right at t; specifically ( )t tλ δ  is approximately the 
probability of exit in the time interval ( ],t t tδ+  provided the object is still 
alive at t. It is also useful to define the cumulative hazard function 

0

( ) ( )
t

t s dsλΛ = ∫ as it can be seen that ( )( ) tS t e−Λ= . If the concepts are 

applied to recovery data as indicated above then ( )F t corresponds to the 
expected recovery rate at time t, while ( )S t  to the expected loss rate if the 
recovery process was terminated at t. The hazard rate ( )tλ corresponds to 
the incremental recovery rate or to the speed of recovery measured on the 
unrecovered amount at time t after default. 

The models are specified through the hazard function given in a 
parametric or semi-parametric form. The parameters are moreover allowed 
to depend on explanatory variables characterizing the objects under 
observation. For example the parametric Weibull model is specified by 

 1 ( ),( ) (( ) )
pp tS t et p t λλ λ λ − −== , (5) 

while the Loglogistic model has the form 

 1 1/ [1 (( ) ( ) )
)

], ( ) .
1 (

p p
pt p t t S t

t
λ λ λ λ

λ
− + =

+
= , (6) 

The coefficient eλ ′−= x β in both cases depends on the vector of 
covariates x (without the constant 1). The coefficients θ = (β,p) are 
estimated using a maximum likelihood method maximizing in general 

 uncensored all observations
observations

) ln ( | ) nn l )l (( |L t S tλ= +∑ ∑θ θ θ , 
(7) 

The two parameterizations can be formulated as accelerated failure 
time models where ln 'T ε+= x β and ε has a specific distribution.  

The parametric models are attractive for their simplicity but may 
impose too much restriction on the structure of data. Fewer restrictions 
are imposed by the Cox (1972) proportional hazard model we shall focus 
on. The proposed hazard function has a semi-parametric form 
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0( , ) ( ) exp( ' ),t tλ λ=x x β  

where 0 ( )tλ  is called baseline hazard function independent on the 
explanatory variables x .  

The baseline hazard is a step function estimated on a discrete set of 
points where exits or censoring take place. The corresponding survival 
function is in the form 
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                         (8) 

 

The coefficients β are estimated using the partial likelihood: if an object 
i with covariates ix exits at time it , if we assume that there is only one exit 
at that time, and if iA  is the set of objects alive at it then the partial 
likelihood is 
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(9) 

The coefficients β  are then obtained maximizing 
1

ln ln
K

i
iL L

=

= ∑  

numerically using the Newton-Raphson algorithm. In general, in 
particular in the case of recovery process modelling, we need to handle 
ties, i.e. multiple exits at the same time. The partial likelihood function 
(9) can be generalized in a straightforward manner for the case of id  ties 
(frequency weights) at the same time it . However due to computational 
complexity the exact partial likelihood function is usually approximated 
by an estimate due to Breslow (1974) or due to Efron (see Kalbfleisch, 
Prentice, 2002). Given β the baseline hazard function values are estimated 
separately for each of the unit time intervals where it is assumed to be 
constant maximizing the likelihood function 
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( )
0 0

1

( ) exp( ) exp ( ) exp' ( )' ) ([ ] ( ),i

n
dN t

t i i i
i

L t t Y tλ λ
=

= −∏ x β x β  

where ( )idN t is an indicator of the fact that subject i  died in the time 
interval ( 1, ]t t− , and ( )iY t  is an indicator of the fact that subject i is at the 
time 1t − still alive. The maximum likelihood estimator of the baseline 
hazard function is then in the Breslow-Crowley form 

 1
0

1

( )
ˆ ( ) .

ex 'p ( )( )

n

i
i

n

i i
i

N t
t

Y

d

t
λ =

=

=
∑
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(10) 

If there are no explanatory variables, i.e. exp( ) 1'i =x β , then the 
estimator gives the estimate of the Kaplan-Meier hazard rate function and 
the corresponding Kaplan-Meier survival function. 

To apply the survival analysis approach to recovery data we assume to 
have a set of defaulted receivables a C∈ and observed (discounted net) 

recovery cash flows (( , , )
1 )

)
( tR CF a tCF a t

r
=

+
 (see (1)) taking nonnegative 

integer values. The recovery time t  is measured in month (or some other 
units) and takes only values in {1, 2,..., }K , i.e. the maximum length of the 
recovery process is K month. The observed recovered amounts end at a 
time ( )endt a K≤ . If ( )endt a K<  then the recovery process has been either 
successfully finished, or abandoned with a write-off, or the process has 
not been completed, but we have no more observations. Defaulted 
receivables with complete recovery history are marked by the 
indicator ( ) {0,1}fin a ∈ . If ( )endt a K= then the recovery process is always 
considered to be complete, i.e. ( ) 1fin a = . Moreover for each receivable 
there is an initial exposure at default ( )EAD a again being a positive 
integer and a vector of explanatory variables ( )ax  (personal and/or 
behavior information). We assume that the cumulative recovery cash flow 

1

( , ) ( , )
t

s

CRCF a t RCF a s
=

= ∑ never exceeds the exposure at default. In 

particular the observed ultimate recovery rate 
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( ) ( , ) ( , ) / ( )end endRR a RR a t CRCF a t EAD a= =  (corresponding to (1)) will 
be always in the interval [0,1] . Finally, the survival time data set must 
contain not only the information on amounts that have been recovered but 
also the information on amounts that were not recovered. We will 
construct it as follows: 

1. For every , ( )endC t ta a∈ ≤  with ( , ) 0RCF a t > include an observation 
of ( , )RCF a t objects with covariates ( )ax exiting at time t , i.e. censor 
= 0 (for exit) and frequency weight ( , )d RCF a t= . This means that the 
amount of ( , )RCF a t  was recovered at the time t . 

2. For every a C∈ such that the recovery process is incomplete 
( ( ) 0fin a = ) and ( , ( )) ( )endCRCF a t a EAD a<  include an observation 
of ( ) ( , ( ))endd EAD a CRCF a t a= − objects with covariates ( )ax  
censored at the time ( )endt a . This means that the amount of d  has not 
been recovered until the time t , i.e. survived the time t  with no future 
information (censoring). 

3. For every a C∈ such that the recovery process is complete 
( ( ) 1fin a = ) and ( , ( )) ( )endCRCF a t a EAD a< include an observation of 

( ) ( , ( ))endd EAD a CRCF a t a= − objects with covariates ( )ax censored 
at the time t K= . In this case we know that there were no recoveries 
until the last observation time and we have no more future 
information. 

Having applied one of the parametric or semi-parametric survival 
models described above we get a survival function ( , )S t x and our final ex 
ante LGD estimate for a receivable a will be the survival probability 

ˆ( ) ( , ( ))L a S K a= x , 

i.e. the probability (given by the covariates of a ) of a currency unit not 
being recovered until the maximal recovery time. 

1.5 Pseudo Survival Models for LGD 

The main advantage of the proposed application of survival models to 
LGD estimations is a consistent utilization of all available recovery data 
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including partial recoveries. On the other hand it appears that the 
maximum likelihood estimation approach used by the standard survival 
analysis model is a weak point with respect to the targeted goodness of fit 
measures, i.e R-squared and the modified R. Moreover the likelihood 
estimation (7) or (9) takes into account the sequence of all partial 
recoveries while the R-squared and modified R indicators measure 
performance of the predictions only with respect the ultimate recovery 
rates. 

Our proposed modification is to use an appropriate survival model 
functional form )( , |S t θx and to fit the parameters θ not using MLE but 
simply minimizing an appropriate sum of squared errors. Similarly we 
could minimize a sum of absolute differences but the minimization would 
be generally numerically less efficient due to many singularities of the 
function to be minimized. Taking into account only the ultimate or last 
available recovery rates the EAD weighted sum of squared errors is 

 
( ) ( )

( )

2

, ( ) 1

2

, ( ) 0

( )· ( )· ( ) (

( )

, ( ) | )

( ), ( ) | ( ))· ( )· ( ) ( ,

a C fin a

end end
a C fin a

w a EAD a S K RR a

w a EAD a S t

SSE x a

RR a ta x a a

θ θ

θ

∈ =

∈ =

= − +

+ −

∑

∑
 

(11) 

The purpose of the weights ( )w a  is to differentiate completed recovery 
observations and partial observations. Note that in the Cox regression an 
account contributes to the likelihood function with a number of terms (9) 
corresponding to the number of monthly observations. Partial recoveries 
based on short observations should have lower weights than the results 
based on a full or almost completed recovery process. Consequently we 

propose to set ( ) 1w a = for completed observations and ( )( ) endt aw a
K

= for 

incomplete recoveries. The estimation procedure can be directly realized 
in the case of the parametric Weibull (5) or Loglogistic model (6) where 

( )pθ = β, . To apply the idea to the Cox model we must specify the 
baseline survival function in (8). We will use simply the Kaplan-Meier 
estimate 0 ( )S t , and the vector of coefficients to be estimated will be just 
θ = β  in this case also including the constant coefficient changing the 
overall level of the baseline survival, hence  
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 ( )
0( , | ( )) expt SS t ′= β xx β  (12) 

2 Empirical Results 

We have used an LGD data set of 4 000 defaulted unsecured retail 
loans obtained from a large Czech retail bank. The loans defaulted in a 
recent period (preceding the year 2008 but not exactly specified due to 
confidentiality reasons) of 57 months in a numbering used by the bank 
starting with the month 1 162m = and ending with the month 2 218m = . 
The last month when we have observed recoveries is 3 220m = , thus the 
recovery process has not been completed for many accounts. The data set 
contains account level information on net discounted monthly recovery 
cash flows as well as some basic application and behavior explanatory 
variables. Ultimate recovery rates are achieved by a sale of receivable, 
write-off, or full recovery, with majority of cases (87%) being resolved in 
27 months. To test the survival methods in the context outlined in Section 
2 we need data of the type shown in Figure 1 and at the same time to have 
the information on ultimate recoveries for all accounts in the data set. In 
order to achieve that we not only need to move retrospectively back, e.g. 
to restrict ourselves only to accounts that defaulted between the months 
162 and 194, but also to shorten the maximum recovery time to a shorter 
period, e.g. setting 27K = . Figure 2 shows the structure of the original 
and modified data set. 

Fig. 2: The original and modified data sets 
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Hence the development of various ex ante LGD functions will be done 
as of the month 194 on the data sets D1 and D2, but the goodness of fit 
measures will be calculated on ultimate recovery rates, i.e. also on the 
data set D3 available from the perspective of the month 220. Since for the 
purpose of survival analysis method testing we admit only nonnegative 
cash flows and recovery rates in [0,1] we had to omit negative cash flows 
and adjust the exposure at default to the cumulative recovery rate in case 
it exceeded the original EAD. The resulting distributions of the ultimate 
recovery rates on the data set D1 and on D3 shown on Figure 3 are highly 
bimodal due to the fact that original data contained an unusually high 
number of recoveries below 0 and over 1. Note that the recovery rate 
distribution on D3 (unknown at the development month 194) differs quite 
significantly from the distribution on D1. 

Fig. 3: Histograms of ultimate recovery rates on the data sets D1 
(left) and on D3 (right) 
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A descriptive statistics of the datasets D1, D2, and D3 focusing on the 
ultimate or last available recovery rates in the case of D2 is shown in 
Table 1. 

The number of observations is obviously still more than sufficient to 
calibrate the model. There are 8 available explanatory variables including 
time in books, exposure, and other application or behavior properties not 
disclosed by the bank. One categorical variable with 10 possible values 
has been decoded into 9 dummy variables; hence the total number of the 
regression variables not including the intercept coefficient is 16. 
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Tab. 1: Descriptive statistics of the ultimate or last available recovery 
rates on D1, D2, and D3 

 Ultimate RR on D1 Last RR on D2 Ultimate RR on D3 
Num 605 1739 1739 
Max 1 1 1 
Min 0 0 0 
Mean 0.5951 0.3508 0.5253 
Median 0.8174 0.1136 0.5260 
Range 1 1 1 
Std 0.4270 0.4133 0.4010 

The last available (partial) recovery rates on D2 cannot be used for the 
linear and logistic regressions development. The results of the regressions 
developed on ultimate recoveries on D1 in terms of the R-squared and 
modified R goodness of fit indicators measured on D1, D3, and D1+D3 
are presented in Table 2 and 3. 

Tab. 2: The goodness of fit measures for the LGD linear regression 

D1 D3 D1+D3 
Num R2 Mod R Num R2 Mod R Num R2 Mod R 
605 15.18% 11.96% 1739 6.72% 8.63% 2344 8.9% 9.47% 

Tab. 3: The goodness of fit measures for the LGD logistic regression 
with different cut-offs 

 D1 D3 D1+D3 
Cutoff Num R2 ModR Num R2 ModR Num R2 ModR 

0.1 605 12.73% 8.67% 1739 13.11% 9.78% 2344 13.02% 9.50% 
0.2 605 14.32% 10.28% 1739 7.99% 8.09% 2344 9.62% 8.65% 
0.3 605 12.14% 9.20% 1739 6.99% 7.46% 2344 8.32% 7.90% 
0.4 605 15.63% 11.59% 1739 6.91% 8.32% 2344 9.15% 9.15% 
0.5 605 15.08% 11.15% 1739 6.68% 8.13% 2344 8.84% 8.89% 
0.6 605 15.06% 11.28% 1739 6.47% 8.01% 2344 8.68% 8.84% 
0.7 605 14.79% 10.99% 1739 5.41% 7.00% 2344 7.82% 8.01% 
0.8 605 13.93% 10.70% 1739 3.81% 6.26% 2344 6.41% 7.38% 
0.9 605 12.85% 9.30% 1739 4.08% 5.33% 2344 6.33% 6.33% 
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Our key goodness of fit indicator, i.e. the modified R on D1+D3, does 
not show a superior performance with values below 10%. The low R 
indicates a weak explanatory power of the covariates which is 
nevertheless normal in the case of LGD predictions according to the 
authors’ experience. The linear and logistic regressions with the recovery 
rate cut-off threshold at 10% show the best performance. Looking also on 
the R-squared one would prefer the logistic regression predictions. It is 
interesting to note that while the linear regression fits well the data set D1 
and poorly the data set D3, the logistic regression predictions appear to be 
more balanced. 

Next we have performed the Cox regression based on maximum 
likelihood estimation of the coefficients with the same covariates but 
extending the data set D1 with partial recoveries in D2. The goodness of 
fit measures in Table 4 indicate that the predictions fit much better the 
ultimate recovery rates given by D3 due to the partial recovery history 
information. The overall performance on D1+D3 is significantly superior 
to the linear and logistic regression. 

Tab. 4: The goodness of fit measures for the Cox regression 

D1 D3 D1+D3 
Num R2 Mod R Num R2 Mod R Num R2 Mod R 
605 7.26% 6.91% 1739 14.53% 12.99% 2344 12.66% 11.45% 

 

The Cox survival function and a particular shape of the baseline 
hazard function in Figure 4  and 5 indicate that the parametric hazard 
functions might be difficult to fit to the given data. The Weibull and 
Loglogistic models we have tested provide indeed weaker results 
compared to the Cox regression. 
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Fig. 4: The baseline hazard function given by the Cox regression 

 

 

Fig. 5: The survival function for the first account given by the Cox 
regression 

 

 

Finally we have estimated the Kaplan-Meier survival function 
0 ( )S t and found the coefficients of the Cox-like function (12) minimizing 

the sum of squared errors (11) on D1+D2. As we expected the predictions 
yield significantly better performance with modified R almost 13% and 
R-squared on D1+D3 exceeding 15%. The parametric functions again did 
not show a better result. 
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Tab. 5: The goodness of fit measures for the pseudo Cox regression 

D1 D3 D1+D3 
Num R2 Mod R Num R2 Mod R Num R2 Mod R 
605 10.21% 8.81% 1739 17.66% 14.37% 2344 15.68% 12.92% 

 

Conclusions 

We have described and tested four regression methods, linear regression, 
logistic regression, survival, and pseudo survival, to estimate future 
recovery rates and LGDs. The recovery data have been limited to only 
non negative cash flows and the recovery rates not exceeding one. 
Without those assumptions the survival methods can be hardly expected 
to be applicable. This prerequisite could be however achieved separating 
the gross recovery amounts from the costs and scaling the data 
appropriately, e.g. using a discount rate corresponding to the penalizing 
interest rates and the late fees. The general experience from banking 
practice is that standard regression LGD predictions perform quite poorly 
with R2 below or around 10%. In spite of that banks do apply the 
regression analysis at least to sort exposures into appropriate LGD pools. 
Thus any improvement in the account level LGD prediction methods is 
desirable. The results confirmed that the survival methods utilizing partial 
recovery observations provide significantly better ex ante predictions with 
R2 exceeding 15%. We have identified the Cox proportional model 
compared to the parametric as more flexible and appropriate to fit 
empirical recovery data with different patterns. Our proposed 
modification of the survival methods, in particular the pseudo Cox model, 
based on minimization of squared differences on last known recovery 
rates outperformed all the other methods.  
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Survival Analysis in LGD Modeling 

Jiří WITZANY – Michal RYCHNOVSKÝ – Pavel CHARAMZA 

ABSTRACT  

The paper proposes an application of the survival time analysis 
methodology to estimations of the Loss Given Default (LGD) parameter. 
The main advantage of the survival analysis approach compared to 
classical regression methods is that it allows exploiting partial recovery 
data. The model is also modified in order to improve performance of the 
appropriate goodness of fit measures. The empirical testing shows that the 
Cox proportional model applied to LGD modeling performs better than 
the linear and logistic regressions. In addition a significant improvement 
is achieved with the modified “pseudo” Cox LGD model.  
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