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Exposure at Default Modeling 
with Default Intensities#### 

Jiří WITZANY* 

1 Introduction – The Concept of Exposure at Default 

Basel II regulatory capital requires banks, in the advanced internal 
rating based approach (IRBA), to estimate for each credit exposure three 
key parameters: probability of default (PD), loss given default (LGD), 
and exposure at default (EAD). The regulatory capital formula for retail 
products can be expressed as ( ( ) )· ·C UDR PD PD LGD EAD= − . It is clear 
from the formula that the capital is as sensitive to the quality of the LGD 
estimates as well as to EAD  estimates: 10% relative error in EAD  
(orLGD) leads to 10% error in the final regulatory capital, in the positive 
or negative direction. While PDestimation techniques, that are necessary 
for correct loan pricing, have been well developed many years before 
Basel II came into effect, banks still strive to develop sophisticated 
techniques to estimate the LGD and EADparameters. There is quite 
limited literature on the subject (Araten – Jacobs, 2001; Moral, 2006, and 
Jacobs, 2008). The purpose of this study is to propose a new advanced 
methodology for EAD  estimations incorporating not only various 
regression techniques but also the intensity of default modeling. 

The most general EAD  definitions and requirements are given in 
BCBS (2006). The concept is further specified and implemented in the 
European legislation EC (2006). Useful guidelines and interpretations can 
be found in CEBS (2006). According to BCBS (2006) the Exposure at 
Default (EAD ) for an on-balance or off-balance sheet exposure is defined 
as the expected gross exposure of the facility upon default of the obligor. 
The EAD  estimates are important in particular for off-balance sheet 
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exposures and for exposures that are composed of an on-balance sheet 
exposure (drawn amount) and off-balance sheet exposure (undrawn 
amount) like in the case of revolving credit, credit cards, and different 
lines of credit. EADestimates may be theoretically challenging even for 
products with fixed principal and no undrawn amount due to the 
possibility of unpaid interest and late fees increasing the exposure or, on 
the other hand, repayments reducing the exposure at default compared to 
the current exposure. However, it follows from EC (2006) and CEBS 
(2006) that for those exposures it is sufficient to set EADequal to the 
current gross exposure. This study will consequently focus on exposures 
generally composed of drawn and undrawn off-balance sheet amounts. 
The regulation requires EADbeing estimated as the on-balance sheet 
exposure plus an amount reflecting the possibility of additional drawings. 
While BCBS (2006) does not stipulate any particular method for 
estimation of the expected additional drawings, EC (2006) does require 
banks to obtain so called Conversion Factors (CF) estimating the 
utilization of the undrawn amount upon default and calculate the 
Exposure at Default as 

 Limit UndrawnCFExposure CurrentEAD ·+= , (1) 

The conversion factor (on a non-defaulted facility) is required to be 
always nonnegative. The estimation also strongly depends on the time 
horizon. Since PD  and LGD are considered in one-year horizon, 
EADshould be also estimated conditional upon default in the same one-
year horizon. There are several approaches, as noted by CEBS (2006), 
how to treat the time to default that is unknown for non-defaulted 
facilities, for example, the cohort approach, fixed time approach, or 
variable time approach. 

As mentioned in CEBS (2006), some banks have traditionally 
expressed conversion factors out of the total credit limits not only out of 
the undrawn limit. We will call this factor Credit Conversion Factor 
(CCF ). This method with ·LimitEAD CCF= , also called the momentum 
approach, in its simplest form does not fulfill the Capital Adequacy 
Requirements (CAD). However, according to CEBS (2006) the approach 
may be acceptable, if CCF just serves as a mean for the final 
CF estimation (for example, given a CCFestimation, calculate EADand 
then solve the equation (1) for CF  making sure that the conversion factor 
is nonnegative). We will also consider a generalized approach, where 
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EAD is estimated as a function of the current exposure, total limit,  and 

other risk drivers, with CF recalculated according to (1). 

Section 2 of this study outlines basic definitions, concepts, and data 
set requirements. We shall start with a full probabilistic definition of 
EAD that will be estimated using different methods depending also on 
quality and size of observed data available in the reference data set. Pool 
level methods will be described in Section 3 while account level 
estimation methods will be proposed in Section 4.  

2 Definitions, Concepts, and Data 

2.1 Ex-Post Exposure at Default and Conversion Factors 

The ex-post EAD  on a defaulted facility is defined simply as the gross 
exposure1 ( )dEx t  at the time of default dt  where ( , ) ( )Ex a t Ex t= denotes 

the on-balance sheet exposure of facility a  at time t . We omit the 
argument awhenever it is clear from the context.  

It is not so straightforward to define the ex-post conversion factor on a 
defaulted facility since it requires a retrospective observation point called 
the reference date rt , where we observe the undrawn amount ( ) ( )r rL t Ex t− , 

with ( )L t denoting the total credit limit at time t . Since a conversion 
factor measures the utilization out of the undrawn amount we need to 
have ( ) ( ) 0r rL t Ex t− > . Then, it makes sense to define the ex-post CF as 

 
( ) ( )

( ,
( )) (

) d
r

r

r r

Ex t Ex t
CF CF a t

L t Ex t

−
−

= = , (2) 

Note that an observed (ex-post) conversion factor may, in practice, be 
negative if the drawn exposure between the reference date and the default 
date declines, as well as larger than 1 if the exposure at default exceeds 
the limit effective at the reference date. This may happen if there is an 
increase of limit or a breach of limit, for example, caused by interest and 
                                                 
1  Alternatively, the gross exposure could be split to the fees and interest and the 

principal amount. The principal amount drawing depends purely on the debtor’s 
decision while fees and interest are in a sense automatic. Thus, the two components 
might be treated in different ways. However, in order to keep the framework simple, 
we are going to model only the total gross exposure development.  
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late fees. We will admit such observed values but the estimated ex-ante 
conversion factor still has to be nonnegative (regulatory requirement) and 
will be expected to be usually lower or equal than 1 (estimated CF larger 
than 1 exceptionally acceptable). Notice also that the expression (2) is 
very sensitive to the drawn amount if the undrawn amount is small. In 
case of simple average CF estimates a materiality threshold on 

( ) ( )r rL t Ex t−  should be set in order to eliminate unnecessary outliners. 

The materiality threshold is not needed in case of exposure-weighted or 
regression CF estimates described in Section 3.2. 

2.2 Ex-Ante Exposure at Default and Conversion Factors 

Regarding ex-ante EAD  and CF we will start with a full probabilistic 
definition and analysis. Let τ denotes the time of default of a non-
defaulted facility aat time t . Since we do not know the time of default, 
τ is a random variable and τ < ∞ as we may assume that any debtor 
eventually defaults in the infinite time horizon. EAD  is defined 
conditional upon default in the one-year horizon, hence the theoretical 
definition is 

 ( , ) [ ) |( 1]EAD EAD a t E Ex t tτ τ< ≤ += = . (3) 

Note that [.]E denotes the expected value, not the exposure where we 
rather use the notation ( )Ex t . To decompose the unknown time of default 
and EADconditional on the time of default we need to introduce the time 
to default density function( )g s . Here, ( )g s s∆  is the probability that 
default happens during the time interval[ ],s s s+ ∆ . Consequently, EAD  
can be expressed as the ( )g s ds  weighted average of the expected exposure 
upon default at sτ = : 

 

1

( , )

[ ( ) | ] ( )

[ 1]

t

t

E Ex s g s ds

EAD EAD
t

a
P t

t

τ τ

τ

+

<
=

=
=

≤ +

∫
. 

(4) 

Thus, according to the analysis ex ante EADdoes also depend on the 
probability distribution (density function) of the time to default. In 
particular, for short term retail loans, according to empirical experience, 
the time to default density function is large shortly after drawing and later 
significantly declines (see Fig. 1 for an illustration). This dependence 
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typically exists if we observe exposures homogenous in terms of time in 
bank, e.g. new credit cards or mortgages after a fixed number of years etc. 
If the portfolio is mixed with respect to the time in bank then the 
dependence usually disappears or becomes insignificant.  

Fig. 1: Intensity of time to default from the first withdra wal – 
Credit Cards 
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The distribution of the time to default depends on a particular product, 
as well as on the time from the facility origination. Note that the same 
approach could be theoretically applied to LGD. However, the empirical 
experience is that there is no significant dependence of ex-ante LGD on 
the time to default in the one-year horizon, while there is a significant 
dependence of average observed CF on the time to default d rt t−  (see 

Fig. 2 for an illustration). This is confirmed for example by the study of 
Araten and Jacobs (2001). Consequently we will use the definition (4) 
which can be also called PD-weighted approach. 
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Fig. 2: Conversion factors and time to default dependence 
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In practice, we need to get an estimation �EAD of EADdefined 
according to (3) or (4). The hat notation will be sometimes omitted but we 
need to keep in mind that there are three different EADs or CFs: those 
calculated ex-post from the historical data, then the theoretical and 
unknown ex-ante values (parameters of a probability distribution without 
a hat), and their estimations which depend on the estimation method 
chosen (with a hat).  

For example, the integral (4) can be approximated by a discrete 
summation: Let us split the one-year time interval into a sequence of 
subintervals 0 1 1( , ],..., ( , ]n nt t t t−  where 0 10 1nt t t= < < < =⋯ . Next we 

estimate � iEAD  conditional on time of default τ being in the interval 

1( , ]i it t−  and the probability ̂ ip  that default happens during this interval for 

1,...,i n= . Consequently, 
1

ˆ ˆ
n

i
i

p p
=

=∑ estimates the probability of default 

within one year. Then, in line with (4), we get the approximation 

 � �

1

1
ˆ ·

ˆ

n

ii
i

EAD p EAD
p =

= ∑ . (5) 
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In order to obtain the conditional � iEAD estimations we must to split 
our observed data according to different distances between the reference 
date and the default date. The subintervals may have equal length of, for 
example, one or three months, or we can use an irregular splitting 
depending on the sensitivity of EADon the time to default. This approach 
is clearly applicable if there is an approximation of the time to default 
density function. (The estimates ˆ ip  may be obtained e.g. observing a 

portfolio of non-defaulted accounts with certain characteristics at time 
T and counting the number of defaults in the interval 1( , ]i iT t T t−+ + .) 

Alternatively we could estimate the average time to default 

1

1

1
ˆ

ˆ 2

n
i i

i
i

t t
p

p
τ −

=

+= ∑  conditional on 1τ ≤ and set 

 � �
0iEAD EAD= . (6) 

where 0i is the first index i  such that 1[ ],i ittτ −∈ . Such estimation should 

be better than, for example, one-year to default fixed time horizon 
estimation but its quality strongly depends on the distribution of the time 
to default and on the dependence of EADon the time to default. Since 
distribution of the time to default varies across different products and 
facilities it is clear that (5) provides much more precise estimation 
compared to (6). 

Similar approach can be applied to conversion factor estimation since 

 
( ) ( ) ( )

( , ) 1
( ) ( ) ( ) ( )

Ex Ex t EAD Ex t
CF a t E t t

L t Ex t L t Ex t

τ τ
 − −= < ≤ + = − − 

. (7) 

as ( )L t and ( )Ex t , the current limit and the current exposure, are known at 
the reference time and can be taken out of the expectation operator. 
Combining (7) and (4) we obtain  
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(8) 
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Consequently, if � iCF are estimates conditional on time to default 
being in the interval 1( , ]i it t− we may again use the PD-weighted average 

 � �

1

1
ˆ ·

ˆ

n

ii
i

CF p CF
p =

= ∑ . (9) 

2.3 Reference Data Set (RDS) 

Reference data set is a set of historical observations used for ex-ante 
EAD estimations. Our notation follows Moral (2006). An observation 

, )( , ,r d RDo a t t=
����

 consists of defaulted facility identification, the reference 

date, the date of default, and a vector of risk drivers containing at least the 
information on exposures and limits at the reference and default dates 
( ( ),), ( ( ), ( )r r d dEx t ExL t t L t ). Other risk drivers might capture the 

information on qualitative risk drivers as the facility type, customer type, 
rating class at reference date, or average rating during a period preceding 
the reference date, status of the facility (e.g. output of an Early Warning 
System), collateralization and third person guarantees, covenants (more 
appropriate corporate borrowers); and quantitative risk drivers like time 
in bank, time to maturity, expected LGD which could be a parameter 
aggregating a number of the other explanatory variables, etc. It is not 
necessary to record macroeconomic risk drivers on the account level as 
those depend only on the observation date and can be kept in a separate 
table. 

RDS should be created separately at least for different products, e.g. 
credit cards, overdrafts, lines of credit, etc. In case of lack of data the data 
sets could be possibly unified. Such an approach should be however 
exceptional due to possible different development of drawings before 
default for different products, for example, due to various controls and 
restrictions imposed by the bank. On the other hand, in the pooling 
approach with sufficient historical database product level RDS should be 
split to a number of subsets capturing certain risk drivers, e.g. facility 
status or macroeconomic situation. Similarly, to apply a time-series 
analysis approach the RDS needs to be further split into cohorts according 
to time of default or the reference date. The splitting of RDS is possible 
only as long as there are enough observations in the resulting pool level 
reference data sets. In order to calculate meaningful ex-post conversion 
factors we should require, depending on the estimation method employed, 
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that ( ) ( )r rL t Ex t−  is larger than certain reasonable threshold. In other 

words the observations where the undrawn amounts fall below the 
threshold should be removed from the RDS. The threshold is to be 
applied only in case of default weighted average calculation (see Section 
3.2) and is not necessary for the other estimation methods, where the 
observations are in principle weighted by the undrawn amount. 

As explained in the definition of ex-post EADand CF a single 
observation is not determined only by the facility that defaulted at time 

dt but also by the reference date rt at which we measure the retrospective 

drawn and undrawn amount. We do not exclude the possibility of more 
than one reference date for a given single defaulted facility in order to 
capture the dependence ofEADand CF on the time to default. The most 
common choice (and the most conservative in line with the analysis 
above) is the one year horizon corresponding to the unexpected credit 
losses estimation horizon, however, there are different alternatives (see 
also Moral, 2006): Fixed Time Horizon, Cohort Approach, or Variable 
Time Approach. 

Fixed Time Horizon Approach sets r dt t T= − , where T is a fixed 

time horizon (see Fig. 3). RDS defined in this way in fact leads to an 
estimation of EAD and CF conditional on the time to default being equal 
exactly to T . Hence, a number of RDS with different fixed time horizons 
and based on the same set of defaulted facilities may be constructed in the 
PD-weighted approach. Nevertheless, banks often use ar1 yeT =  as a 
standard choice. As explained above, the weighted time to default appears 
to be better, if just one fixed time horizon is to be used. 



European Financial and Accounting Journal, 2011, vol. 6, no. 4, pp. 20-48. 

 29

Fig. 3: Fixed Time Horizon approach 

 

Cohort Method divides the observation period into intervals 

0 1 1( , ],...( , ]n nT T T T−  of a fixed length, typically 1 year (see Fig. 4). 

Defaulted facilities are grouped into cohorts according to the default date. 
The reference date of an observation is defined as the starting point of the 
corresponding time interval. I.e. if 1( , ]d i it T T+∈  then we set r it T= . In this 

case, the time to default probability distribution is implicitly captured in 
the data. However, the beginnings of intervals may cause a significant 
seasoning bias (for example iT some time before Christmas will probably 

show higher drawing on credit cards or overdrafts than during the other 
months). Hence, it is advisable to set iT at “normal” periods of the year 

with average drawings. 
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Fig. 4: Cohort approach 

 

Variable Time Horizon Approach uses a range of fixed horizons 

1,..., kT T , e.g. one to twelve months, or 3, 6 , 9, and 12 months (see Fig. 

5). For each observation we calculate realized conversion factors for the 
set of reference dates , 1,...,r d it t T i k= − = . The difference compared to 

the fixed horizon approach is that we put all the observations 
( , , ,...)d i da t T t− into one reference data set (RDS). In the fixed horizon 

approach we admit different time horizons only in different reference data 
sets used for conditional EAD estimation. When all the observations are 
put into one RDS there might be a problem with homogeneity, for 
example, the facilities that have been already marked as risky with 
restrictions on further drawing should be treated separately. Moreover, 
there is an issue of high correlation of the different observations obtained 
from one defaulted account. The RDS on the other hand captures 
implicitly the possible dependence of EAD and CF on the time to default, 
but the distribution of the time of default (appearing flat in the RDS) is 
not realistically captured. This dataset is not suitable in the context of the 
PD-weighted approach by definition. 
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Fig. 5: Variable time horizon approach 

 

The broadest RDS must contain all the observations of facilities for a 
given product type that have defaulted over the observation period. The 
length of the period must be in line with the regulatory requirement at 
least 5 years (or 2 years according to EC, 2006). If we interpret the 
requirement in the sense that RDS is based on all accounts defaulted 
during the last 5 years then, in fact, we need data starting 6 years ago 
since the reference dates are set up to one year before the default dates. 
The time period should optimally cover the full economic cycle according 
to EC (2006).  

To summarize we recommend the fixed-time horizon approach for the 
PD-weighted approach (different time horizons for different RDS). 
Otherwise we prefer the cohort method unless the drawings show strong 
seasonality. In that case we recommend the variable-time horizon 
approach.  

2.4 Empirical Example 

We have randomly generated a number of defaulted accounts and 
calculated the corresponding observed conversion factors 1 to 12 months 
prior to default with dependence approximately corresponding to Fig. 2. 
Tab. 1 shows the average Conversion Factors depending on the time to 
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default. At the same time we assume that the density of default (given for 
months 1 to 12 in Tab. 1) has approximately the pattern given by Fig. 1. 

Tab. 1: Conversion factors depending on time to default and the 
intensity of default 

Month i  CF p CFi·pi 

1 4,14% 0,10% 0,23% 

2 14,61% 0,15% 1,21% 

3 30,10% 0,20% 3,33% 

4 39,79% 0,23% 5,06% 

5 47,71% 0,21% 5,54% 

6 54,41% 0,18% 5,41% 

7 57,40% 0,16% 5,07% 

8 62,32% 0,14% 4,82% 

9 65,32% 0,12% 4,33% 

10 67,21% 0,11% 4,08% 

11 69,02% 0,11% 4,19% 

12 69,90% 0,10% 3,86% 

Total   1,81% 47,13% 

Equal weighted CF 48,49% 

PD - weighted CF 47,13% 

The 12 months fixed horizon approach gives the estimate 
�

12 69.9%CF CF= =  . The variable time approach effectively yields the 

average � 48.49%CF =  of the 12 values and a similar result could be 
expected in the cohort approach depending on distribution of default in 
the cohort intervals. The PD-weighted approach according to (9), on the 

other hand, gives � 47.14%CF = . In the simplified approach we may 
firstly calculate the average time to default 5.54 6τ = ≅ months and set 
�

6 54.4%CF CF= = according to (6).  

The message of this exercise is that the CF estimate strongly depends 
on the method chosen. The 12 months fixed time horizon being clearly 
the most conservative while the PD-weighted and variable time estimates 
come out much lower and relatively close. The two values may, however, 
differ more significantly depending on the conditional CF and density of 
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default functions. The PD-weighed CF outlined in Section 2.2 presents, in 
our view, the best estimates from the theoretical point of view. 

3 Pool Level Estimations 

3.1 Definition of Pools and the Concept of Pool level Estimations 

In the pool level approach defaulted and non-defaulted receivables are 
classified into a number of disjoint pools, that are homogenous with 
respect to selected risk drivers, and which contain at the same time 
sufficient amount of historical observations. Specifically, we determine 
certain defining properties , 1,...,l l mφ =  and set )}(|{)( oRDSolRDS lϕ∈=  
where RDSis the broadest reference data set. By the pool l  we 
understand not only ( )RDS l  but also the set of all non-defaulted facilities 

satisfying lφ . Consequently the defining properties may use only the 

information known at the reference date, in particular not the time to 
default d rt t− which is known for defaulted but not for non-defaulted 

facilities (unless our estimation is conditional upon the time to default in 
the PD-weighted approach). Each ( )RDS l  is used to obtain an estimation 

of the conversion factor �( )CF l . Then, for a non-defaulted facility awe 

find the unique class (pool) l , so that asatisfies lφ , and (in the basic 

approach) set 

 � �( , ) ( , ) ( ( , ) ( , ))· ( )EAD a t Ex a t L a t Ex a t CF l= + − . (10) 

Although �( )CF l is a pool level estimate (same for all non-defaulted 

facilities belonging to the pool l ) the estimation �( , )EAD a t is, in fact, 
account specific as it uses the actual account exposure and limit. It could 
be also noted, that pool level CCF estimations (not allowed by EC (2006) 
in the simplest form) approach indeed generally lead to different account 

level EAD estimations, since � �( , ) · ( , )EAD CCF La at t=  does not depend 
on the actual exposure ( , )Ex a t . 

The pool level estimations could be further improved using the PD-
weighted approach applying account level distribution of the time to 
default: ( )RDS l  needs to be split into a number of smaller sets ( )iRDS l  
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according to the time to default. For each of the reference data sets we 

obtain an estimation � ( )iCF l of the conversion factor and calculate �( )CF a  

according to (9). The probabilities of default (ˆ ˆ )i ip p a= should depend on 

the obligor and facility rating, and on the time on books. This approach 
combining efficiently account specific information and pool level 
estimations shows, that there is no sharp borderline between so called 
pool-level and account-level estimations. 

The definition of pools is based either on expert criteria, e.g. just 
according to facility (behavior) rating, or on an advanced technique using 
regression trees or EAD rating, e.g. based on the logistic regression of 
low and high drawings at default. EAD rating could be also a secondary 
product of account-level EAD estimates. The definition of pools must 
take into account the requirement that the pool level data sets ( )RDS l need 
to remain sufficiently large in terms of the number of observations. The 
same requirement applies, when we split ( )RDS l into the data sets 

( )iRDS l according to the time to default (though here we may produce 

more observations for each defaulted facility with different retrospective 
time horizons) as described above, or to cohort sets ( )vRDS l according to 

the time period in which the observation appeared. The cohort estimation 
analysis will be described in Section 3.3 on margins of conservatism and 
time series analyses. It is clear that a very rich initial data set would be 
needed, if we wanted to combine the cohort time series analysis with the 
PD-weighted approach, effectively splitting the initial data sets in three 
dimensions into , ( )v iRDS l . 

3.2 Pool Level Estimations of CF and EAD 

Although EC (2006) requires banks to obtain primarily estimates of 
CF, it should be underscored that the final aim is to get estimations of the 
parameter EAD that enters the regulatory capital formula. Hence, quality 
of different estimation methods should be judged using a goodness of fit 
measure of the distance between the observed EADs (not CFs) and the 
corresponding ex-ante estimations. The standard measure defined as the 
sum of squared errors naturally leads to an estimation of CF being equal 
to a coefficient in a regression equation for EAD. This formula for CF can 
be interpreted as the mean value weighted by squared undrawn amounts. 
We list below some other formulas used by the banking industry. 
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Furthermore we propose a generalized EAD regression approach, where 
the coefficients are constant on a pool level, but CFs must be recalculated 
on the account level in line with our introductory remarks in Section 1. 

In this subsection we consider a reference data set ( )RDS l , which 
could be either the broadest product level data set, or the one resulting 
from subdivision according to certain pooling criteria , 1,...,l l mφ = , 

and/or from the cohort approach, and/or from the time-to-default 
conditional subdivision approach (we omit the possible sub-indicesvand 
i ). 

Given a reference data set with calculated ex-post conversion factors 
( ),CF o o RDS∈ the simplest approach is to calculate the sample 

(default-weighted) mean: 

 �

( )

1
( ) ( )

| ( ) |o RDS l

CF l CF o
RDS l ∈

= ∑ . (11) 

The same weight is assigned to each observation disregarding the 
magnitude of undrawn amount or time of the observation. In particular, 
the observations with very low undrawn amounts might bring a 
significant random error into the estimation. This problem is in general 
solved by the weighted mean approach: 

 �
· ( )

( ) o

o

w CF o
CF l

w
= ∑

∑
. (12) 

where ow are appropriate positive weights (omitting the scope of 

summation ( )o RDS l∈ for simplicity). The natural candidates for the 

weights are the undrawn limit amounts ( ) ( )ow L o Ex o= − . Then we get 

 �
( ( ) ( ))

( )
( ( ) ( ))

EAD o Ex o
CF l

L o Ex o

−
=

−
∑
∑

. (13) 

The weights could also reflect the time of observations assigning 
lower rates to older observations and higher rates to recent observations. 
Note that the standard approach according to BCBS (2006) is the default 
weighted one with no time dependence, however “a credit institution 
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need not give equal importance to historic data if it can demonstrate to its 
competent authority that more recent data is a better predictor of draw 
downs” according to EC (2006). 

As outlined in the introduction, we prefer starting with the standard 
goodness of fit measure 

 
�

(

2

)

( )( )( )
RDSo l

GF E ED o ADA o
∈

= −∑ . (14) 

In other words we are looking for estimation methods producing ex-
ante EAD estimates that minimize the sum of absolute squared differences 
between the realized EADs and the ex-ante predictions. If we restrict 
ourselves to estimations of the form 

 � �( ) ( ) ( )·( ( ) ( ))EAD o Ex o CF o L o Ex o= + −   

then we need to minimize 

 �( )2

( ) ( ) ( )·( ( ) ( ))GF EAD a Ex o CF o L o Ex o= − + −∑ . (15) 

which is equivalent to the regression of the absolute increase without 
constant: 

 
( ) ( ) ( ( ) ( ))EAD o Ex o L o Ex oα β ε− = + − + with 0α =  and 

CFβ = . 
(16) 

Consequently 

 �
2

( ( ) ( ))
( )

( ( ) ( )

·( ( ) ( ))

)

L oEAD o Ex o
l

L o Ex

Ex o

o
CF

−
=

−
−∑

∑
. (17) 

Note that this formula corresponds to weighted mean approach (12) 
with 2( ( ) ( ))ow L o Ex o= − . We recommend using the formula (17) as the 

most consistent pool level CF estimation approach. 
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Alternatively we may apply regression of the relative increase of 

exposure ( ) ( )ead o ex o− in terms of 1 ( )e o− , where 
( )

( )
( )

EAD o
ead o

L o
=  

and 
( )

( )
( )

Ex o
ex o

L o
= . Hence, we scale the observations by the total credit 

limit  and solve the regression equation ( ) ( ) (1 ( ))ead o o e oex xα β+ −− = + ε  
with the condition 0α =  and CFβ = . Note that the goodness of fit in 
this case  

� �2

2

2( )) ( )
1

( ( ) ( ( ) )
( )

GF ead o EAD o
L o

ead o EAD o
 

= − = − 
 

∑ ∑  

differs from (14) and so the result of the regression is 

 �
2

( ( ) ( ))(1 ( ))
( )

(1 ( ))

ead o ex o ex o
CF l

ex o

− −
=

−
∑

∑
. (18) 

The approach may be appropriate for reference data sets where we 
assign the same importance to observations with relatively low total limit 
as to observations with relatively high limit. 

Since our goodness of fit measure (14) is focused on EAD rather than 
CF estimations the following generalized approach can be considered: 

express ex-ante � 1 2· ( ) · () )(EAD Ex oo o Lβ β+= as a linear combination of 

the current exposure and the total limit and find the pool-level coefficients 

1β  and 2β minimizing the goodness of fit measure (14). In other words we 

regress 

 0 1 2· ·ExEAD Lβ ββ += + + ε  with the condition 0 0β = . (19) 

It is clear that we generally get a better result in terms of goodness of 
fit since we have one additional explanatory variable compared to the 
regression approach based only on the undrawn amount. Note that this 
would be equivalent to the one parameter regression (16) if we assumed 
that 1 2 1β β+ = . In order to satisfy the regulatory requirement we may 

recalculate account-specific conversion factors  
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 � 1 2· ( ) · ( ) ( )
( ) max 0,

( ) ( )

Ex o L o E

L o Ex

x o
CF o

o

ββ 
= −

 −

+


. (20) 

We must use the maximum operator, since the conversion           
factor must be nonnegative due to the regulatory conditions. This may 
introduce a conservative bias into the final estimate 
� �( ) ( ) ( )·( ( ) ( ))EAD o Ex o CF o Ex o L o= + − , but the recalculated goodness of 
fit measure (14) might still provide a better result than the pure CF 
approach according to (17). 

3.3 Margin of Conservatism 

The estimation techniques described so far provide, in line with the 
definition (3), the expected value of EAD or CF. The regulation (e.g. 
BCBS, 2006, Art. 475) in addition requires a margin of conservatism 
appropriate to the likely range of errors in the estimate, positive PD x 
EAD correlation, or downturn economic conditions. 

The margin of conservatism may be based either on a time series 
analysis of cohort level CF estimates, or on an analysis of the CF 
distribution, in case there are not enough data to obtain cohort CF 
estimates.  

Assume first that CF is obtained from (17) as a regression coefficient 
of (16), i.e. as the squared undrawn amount average of the ex post 
conversion factors. First of all a margin of conservatism set equal to the 
standard error of the regression coefficient (or its multiple) related to the 
estimation error should be added. 

 �
�

1/2
2

2

( ( ) ( ) ( )·( ( ) ( )))
)

(| ( ) | 1)· ( ( ) ))
(

(

EAD o Ex o CF o L o Ex o
CF

RDS l L o Ex
e

o
s

 − − −
 =
 − − 

∑
∑

 (21) 

Note that the estimation error may be significant when the reference 
data set is small, while it diminishes when the RDS is large. Secondly, we 
want to add a margin of conservatism related to the systematic risk when 
CFs could be on a portfolio level larger than the long term average value. 
Let us calculate the average deviation of the observed values from the 
average with the squared undrawn amounts weights: 
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( ) �( )22

2

( )( ) ( ) ( )
ˆ

( ( ) ( ))
o

o

L o E CF ox o CF o

L o Ex o
σ

−

−
=

−∑

∑
 (22) 

For other averaging techniques described in the previous sections the 
corresponding weights need to be applied. The average deviation might 
be used to obtain quantiles of the parameter CF accepting the 
(simplifying) assumption that it is normally distributed. For example, 

95% percentile could be estimated as � 1ˆ· (0.95)CF Nσ −+  where 1N− is the 
inverse standardized cumulative normal distribution. However this is an 
account level stressed value, while the logic of the regulatory formula is 

to stress portfolio level average values. In other words � 1ˆ· (0.95)CF Nσ −+  
is an estimate that (or worse) can be observed on a single defaulted 
account with 95% probability. But we rather need a 95%-probability 
stressed value that could be observed on average over a large portfolio of 
defaulted accounts. The transformation from the account level standard 
deviation to large portfolio level (asymptotic) standard deviation based on 
a uniform correlation ρ can be easily done using the normality 

assumption: if , 1,...,iX i N= are normal random variables with mean µ , 

standard deviation σ , and with uniform mutual correlation ρ then it is 

easy to show that the standard deviation of the average 
1

iX
N∑

tends to 

σ ρ when N is large. Hence if we estimate that the CF account level 

standard deviation is ̂σ then a large portfolio average CF standard 

deviation is σ̂ ρ provided the mutual correlation is a positive 

constantρ .  

Finally our conservative estimation including the estimation error can 
be expressed as 

 � � � 1ˆ,0) ( (max( (0.95)) · )·cCF CF se CF Nσ ρ −+ += . (23) 

where we suggest to use regulatory correlation values used for 
unexpected PD modeling, e.g. 0.04ρ = for revolving exposures, if an 
EAD specific estimate is not available. We use the standard 95% quantile 
corresponding to the worst year in every twenty years. If the observed 
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time period covers good and bad years, years with high and low PD, then 
the estimation (23) captures not only the estimation error, but also 
possible systematic variation due to economic downturn or high PD 
periods. If the observed period does not cover such years, then an 
additional conservative adjustment based on expert judgment or external 
data should be added. 

If there are sufficient data to produce cohort level conversion factor  
�

vCF estimates we may apply a time series analysis. The approach could 

test the sensitivity of � vCF with respect to macroeconomic variables or PD 
and separate the systematic factors influence from the estimation error. 
However, unless explicitly required by regulator, we propose to use the 
relatively simple and efficient formula (23).  

Alternatively, the regression (16) might be run with a different 
minimization function (Moral, 2006) that assigns a larger weight to 
positive estimation errors (underestimation of the real EAD by 
�EADwhich is not desirable from the regulatory perspective), e.g.  

� �( max( ( ) ,0)· ( ) ·max( ( ),0))( )EAD o Ea EAD o b Eo ADD oA− + −∑  (24) 

where 

�( ) ( ) ·( ( ) ( ))EAD o Ex o CF L o Ex o= + −  and a b>
 
for example 0.95a =  

and 0.05b = . The regression then yields the distribution (/ ( )b a b+ ) – 
quantile rather than the expected value estimate.  

Example: We have randomly generated 620 defaults (of e.g. credit 
cards). The credit limits have been between 10 000 and 50 000 (e.g. CZK) 
and the drawn amount between 10% and 50% of the limit. The 
distribution of the ex post conversion factors in a fixed horizon (12 
months) is shown on Fig. 6. We have used the data set to estimate and 
compare the ex ante conversion factor for the product applying the 
methods described above. 
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Fig. 6: Histogram of the ex post conversion factors 
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First we apply the simple average (11) and get �1 67.29%CF = . Then 

we try the undrawn amount weighted mean (13) to obtain a slightly lower 

value �2 64.42%CF = . Next, we employ the regression based technique 

(17) to get �3 62.27%CF = . Note that this formula is equivalent to the 

squared undrawn amount weighted approach. Hence, the lower estimates 
indicate that the realized conversion factors are lower for higher undrawn 
exposures. Finally, when we apply the percentage increase of exposure 

regression based formula (18), we obtain �4 67.41%CF = . The higher 

value may be explained by the fact that in this approach there is no 
difference between accounts with high and low limits. 

Let us check that the sum of squared errors goodness of fit measure 
(14) comes out the best for the third (regression based) estimation. Instead 
of GF we may equivalently calculate the classical 2R expressed as 

� 2

( )

2

( )

2

( ( ) ( ))

( ( ) )
1 o RDS l

o RDS l

EAD o EAD o

EAD o EA
R

D
∈

∈

−

−
= −

∑

∑
. 
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The 
2R for 
� � � �

2 41 3, , ,CF CF CF CF  came out as 77.33%, 79.07%,79.46%, 

77.22%respectively. Not surprisingly, 2R comes out maximal for � 3CF as 
this estimate maximizes the measure by definition.  

Finally, let us calculate, based on � 3CF , the standard error according 
to (21), the average deviation according to (22), and the conservative CF 

estimation (23). We have obtained: �( ) 0.62%se CF = , ˆ 16.4%σ = , and so 
� 62.27% (0.62% 16 ·0.2)·1..4 65% 68.7%cCF = ≅+ + , where the total 
margin of conservatism is 6.43%. 

4 Advanced Methods – Conditional and Account Level 
Estimations  

As pointed out in the previous section “the pool level techniques” 
described can be from certain perspective considered to be account-level: 
the parameter CF or 1β and 2β from (19) are estimated on a pool but the 

final EADestimate is calculated using account specific information on 
the exposure and undrawn amount. If the PD-weighted approach is 
moreover applied, then we are also using account specific information to 
determine the probability distribution of the time to default. This section 
aims to describe regression techniques, where we estimate already the 
coefficients CF or 1β and 2β as functions of account specific explanatory 

variables with values known for non-defaulted facilities. We may also add 
the time to default as an additional explanatory variable (which is known 
ex-post but not ex-ante) and apply the PD-weighted approach. 

4.1 Regression with CF in the form of the Logit Function 

In this approach, we use again the regression equation (16), but with 
CF expressed in terms of the other explanatory variables 
(macroeconomic, facility, or obligor level risk drivers). Since all the 
relevant risk drivers become explanatory variables, we keep the broad 
product level reference dataset which is not split to smaller pool level 
datasets. Qualitative variables are categorized or represented by dummy 
variables using standard techniques (the regression could be equivalently 
performed in separate pools determined by the qualitative variables, but 
one regression is certainly more convenient). The parameter CF can be 
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modeled in different parametric forms. The simplest linear form would be 
'CF = b f where f is a vector of relevant risk drivers and b is a vector of 

linear regression coefficients. Alternatively, we may use a link function 
e.g. the exponentialCF e−= b'f where the outcome is always positive, but 
may be also larger than 1. If the historical data confirm that [0,1]CF ∈  
then the logit function would be more appropriate: 

 
'

'
( '

1
)

e
CF

e
= Λ =

+

f

f

b

bfb . (25) 

The coefficients are obtained numerically minimizing either the sum 
of squared errors (15) or using the maximum likelihood approach (see 
Section 4.2).  

If a is a non defaulted account with actual risk drivers ( )af then 

� �( ) ( ) ( )·( ( ) ( ))EAD a Ex a CF a L a Ex a= + −  

where � ˆ( ) ( ( ))CF a a′= Λ b f  is our ex-ante account level estimate of 
expected exposure and conversion factor at default. If the risk drivers 
include time to default then we must use the PD-weighted average (9) to 

calculate �( )CF a where � ( )iCF a  are the logistic-link regression estimated 
conversion factors with actual risk drivers of aconditioned on different 
times to default and (ˆ ˆ )i ip p a= account specific estimates of probabilities 

of default for different time bands. In both cases, according to the 
regulatory requirement, we need to add a margin of conservatism. If the 
regression analysis confirms a significant dependence on macroeconomic 
variables (or experienced PDs) then those variables should be firstly 
stressed obtaining ( )s af  representing downturn economic condition, and 

then setting � ˆ( ) ( ( ))ssCF a a′= Λ b f . Alternatively, as in the pool level 

approach, we calculate the standard error �( )seCF  according to (21) and 

σ̂ according to (22) but with � �( )CF CF o= depending on the risk drivers. 
In the case of PD-weighted approach we take the PD-weighted average of 
the corresponding errors. The final conservative estimate then should be 
calculated according to the equation (23), i.e.  

� � � 1ˆ,0) ( (max( (0.95)) · )·cCF CF se CF Nσ ρ −+ += . 
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4.2 Beta regression 

The proposed regression (25) will be statistically more consistent 
when we use an appropriate likelihood function. Let us assume that the 

relative account level 
EAD

ead
L

=  has a beta distribution with minimum 

0 and maximum 1. See e.g. Smithson – Verkuilen (2005) for a detailed 
description of the beta distribution and the regression technique. Since 
ead is our targeted estimate, we recommend to use the log likelihood 
function expressed as follows 

) ln ( ( ), ( ) ( ' ( ))( ( ) ( )), )( , Beta ead o l o o e ol l oφ φ= + Λ −∑ b fb . 

The beta distribution density function ,( , )Beta y µ φ  is here 
parameterized by the mean µ and the precision parameter φ . While the 
mean is expressed as the logit transformation of a linear combination of 
the risk factors we propose φ to be regressed as a constant.  

4.3 EAD regression  

The regression above was based on the functional form 
(1 )ead e eβ= + −  with ( )CFβ = = Λ b' f  or in a simpler parametric form. 

As noted in Section 2 we do not need to stick to this form in the account 
level approach as any account level EAD estimate can be mapped to a CF 
estimate and vice versa. For example the momentum (CCF) approach 
where we assume that EAD depends only on the limit would be given by 
the simple equation ead α=  where ( )α = Λ a'f could be again regressed 
as the logit transformation of a linear combination of the risk drivers. In 
general, we could argue, as in the previous section, that EAD depends 
partially on the total limit and partially on the undrawn amount and 
regress (1 )ad ee α β+ −=  where ( )α = Λ a'f and ( )β = Λ b' f . To obtain the 
conversion factor estimate for a non-defaulted account a  in line with the 

regulatory requirements, we firstly get � ˆˆ( ) ( ) ( ( ) ( ))EAD a L a L a E aα β= + −  
and recalculate �( )CF a  analogously to (20). The margin of conservatism 
can be obtained as above, stressing the macroeconomic risk drivers in 

( )af and adding the margin of conservatism factor according to (23). 
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4.4 EAD (CF) rating – regression trees 

Account level EAD, similarly to LGD, can be estimated in a one-step 
or two-step procedure. One-step estimation means direct regression 
estimation as described above. In a two-step procedure we firstly assign 
to a given account a rating class via an account-level estimate, and then 
obtain an EAD estimation (using the pool-level techniques) given by the 
rating. Hence the EAD rating approach is a combination of account-level 
and pool-level techniques.  

The one-step account level estimation of CF may be used for the 
rating determination (e.g. according to CF intervals 0-10%,…, 90-100%). 
Conversion factors would be then re-estimated on the rating pools. 
Another approach would be to use the regression tree technique approach. 
If the realized conversion factors are distributed into low and high values 
logistic regression could alternatively be tested. 

Conclusions 

We have proposed a number of techniques to estimate the EAD parameter 
as required by the Basel II regulation. Applicability of the techniques 
depends on availability of data and in particular on availability of the 
intensity of default estimates. If those are not in hand then we propose to 
use the variable time RDS approach which implicitly captures the 
dependence of EAD on the time to default. The results of pool level and 
account level regression should be compared in terms of stability and 
estimation errors. If the intensity of default estimates is available then we 
recommend to use multiple RDS with different fixed time horizons to 
produce either pool level or regression EAD estimates conditional on the 
time to default. Finally a margin of conservatism capturing the estimation 
error and systematic factors related to potential downturn economic 
conditions must be added. 

Our numerical examples have shown that the results may depend 
significantly on the method chosen. We have made a number of 
recommendations based rather on a qualitative analysis. However, 
additional empirical research comparing the different approaches and 
based on real banking data need to be done.  
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Exposure at Default Modeling with Default 
Intensities 
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ABSTRACT   

The paper provides an overview of the Exposure at Default (EAD) 
definition, requirements, and estimation methods as set by the Basel II 
regulation. A new methodology connected to the intensity of default 
modeling is proposed. The numerical examples show that various 
estimation techniques may lead to quite different results with intensity of 
default based model being recommended as the most faithful with respect 
to a precise probabilistic definition of the EAD parameter.  
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